A first exploration of the Gaia sky

Anthony Brown

Leiden Observatory, Leiden University brown@strw.leidenuniv.nl

Teamwork to deliver the promise of Gaia

- 10+ years of effort
- 450 scientists and engineers
- 160 institutes
- 24 countries and ESA
- Six data processing centres

gaia

What's in the Gaia DR1 delivery

2.0

D

Variable stars near south ecliptic pole

Gaia DR1 summary statistics

Source numbers

Total number of sources	1 142 679 769
No. of primary (TGAS) sources	2 057 050
Hipparcos	93 635
Tycho-2 (excluding Hipparcos stars)	1 963 415
No. of secondary sources	1 140 622 719
ICRF quasars	2191
No. of sources with light curves	3194
Cepheids	599
RR Lyrae	2595

Magnitude distribution percentiles (G)

0.135%	11.2
2.275%	14.5
15.866%	17.1
50%	19.0
84.134%	20.1
97.725%	20.7
99.865%	21.0

Gaia DR1 input data

- 14 months of input data used
- $\sim 2.3 \times 10^{10}$ transits across focal plane
- all sources treated as single

TGAS Mean no. observations per source (pixel $\sim 1 \text{ deg}^2$)

DPAC/CU3/Lindegren et al., 2016, A&A

685 million sources matched to IGSL

456 million new sources in Gaia DR1

DPAC/CU3/Lindegren et al., 2016, A&A

- (α, δ) for ~ 1.1 billion sources to G = 20.7
- Epoch J2015.0, alignment to ICRF < 0.1 mas, rotation < 0.03 mas yr⁻¹
- Typical position uncertainty ~ 10 mas
- Positions of 2191 ICRF sources from special astrometric solution (Mignard et al., 2016, A&A)
 - ▶ 90% with $\sigma_{\rm pos} < 3.35$ mas
 - no systematic differences with radio positions of more than few tenths of mas

Tycho-Gaia Astrometric Solution (Michālik et al., 2015, A&A)

- Use Hipparcos or Tycho-2 position as prior to disentangle parallax and proper motion
 - ▶ 2 million stars in common with these catalogues

Tycho-2 position (1991.25)

- 5-parameter astrometry from ~ 1 year of Gaia data
- No Hipparcos parallaxes used

Leiden - 2016.09.16 - 8/33

Median parallax uncertainty

DPAC/CU3/Lindegren et al., 2016, A&A

DPAC/CU3/Lindegren et al., 2016, A&A

- TGAS and Hipparcos parallaxes are independent!
- Comparison confirms global quality of Hipparcos and Gaia
- Analysis allows for derivation of realistic error estimates
- These realistic errors are published in Gaia DR1

Gaia DR1 Photometry

- Mean G-band fluxes and errors for all Gaia DR1 sources
 - G magnitudes in VEGAMAG, zeropoints for AB
 - No pass-band calibrations, transformations to other systems to be provided

Stray light effect

- ♦ CCD-transit G-band calibration systematics at the ~ 3 mmag level
- Bright end features related to on-board instrument configuration changes
 - will be calibrated out in future releases

Gaia DR1 Photometry

Observed scatter in CCD transits

Observed scatter in repeat measurements of constant sources demonstrates quoted uncertainties are good indicators of precision

Gaia DR1 Variable Stars

DPAC/CU7/Clementini et al., 2016, A&A

All stars from Hipparcos Catalogue

- Distribution of M_G for stars with $1.0 \le (B V) \le 1.1$ and $\varpi / \sigma_{\varpi} \ge 5$
- Comparison robust scatter estimate for M_G :
 - Red clump: Hipparcos 0.5, Gaia DR1 0.3
 - Dwarfs: Hipparcos 0.4, Gaia DR1 0.3

Full Gaia DR1 data set

- 1 million stars with parallaxes precise to $\leq 20\%$
- 90% inside 590 pc

Future

- > ~ 10 million parallaxes precise to 1%
- ~ 150 million precise to 10%
- ~ 280 million precise to 20%

HR diagram colour coded by tangential velocity

- 41 136 stars with (B V) photometry selected according to: $G \le 7.5$ or $\mu \ge 200$ mas yr⁻¹ or $\varpi \ge 10$ mas
- 90% inside 360 pc

Leiden - 2016.09.16 - 25/33

Proper motions Gaia DR1

- Declination zones visible in map indicate systematics in Tycho-2 proper motions
- Beware large Gaia DR1 Tycho-2 proper motion discrepancies
 - ▶ likely a problem in Tycho-2

Comment on the Pleiades cluster distance

- Preliminary distance estimate 134 ± 6 pc
- Limited in accuracy by:
 - simplistic analysis
 - systematic and correlated errors in parallaxes
 - ▶ incomplete survey of the cluster
- Definitive conclusion on Pleiades distance not yet possible
- Excellent agreement between Hipparcos and Gaia for other clusters

Remarks on Gaia DR1 completeness

- Gaia DR1 not complete in any sense
- Ill-defined and celestial position dependent faint limit
- Scanning law in combination with filtering on data quality causes source density artifacts
- Many bright stars missing at $G \lesssim 7$
- High proper motion stars ($\mu > 3.5$) arcsec yr⁻¹ missing
- High density regions (few 100 000 stars/deg²) affected by:
 - onboard resource limitations
 - no treatment of overlapping observation windows
 - completeness limit can be several magnitudes brighter
- Effective angular resolution not yet at end of mission (HST-like) levels
 - below 4 arcsec separation many secondary components of binaries missing

Bulge region

 ω Centauri

Know limitations astrometry and photometry

Photometry

Limitations

- ► incomplete PSF model
- ▶ imperfect calibration across instrument configuration changes
- difficulties in bright star data processing
- Level of systematics difficult to estimate

Know limitations astrometry and photometry

Astrometry

- ♦ Limitations
 - incomplete PSF model; incomplete attitude modelling
 - no treatment of source colour effects; source modelling errors (all sources treated as single stars)
 - imperfect correction for basic angle variations
- Global zero-point offset of ± 0.1 mas may be present
 - \triangleright -0.04 mas found during validation
- Colour dependent and spatially correlated systematic errors at the level of ± 0.2 mas
- Over large spatial scales, the parallax zero-point variations reach an amplitude of ± 0.3 mas
 - > Over a few smaller areas (2 degree radius), much larger parallax biases may occur of up to ± 1 mas
- Correlations between astrometric parameters of a given source can reach significant values of large regions of the sky
 - make use of the full covariance matrix when taking the standard uncertainties on (subsets and linear combinations of) the astrometric parameters into account

Recommendation: consider the quoted uncertainties on the parallaxes as $\pm \sigma_{\varpi}$ (random) ± 0.3 mas (systematic). Averaging parallaxes over small regions of the sky will not reduce the uncertainty on the mean below the 0.3 mas level.

Know limitations astrometry and photometry

All shortcomings will be addressed in future data releases with substantial improvements already foreseen for Gaia DR2

Data access

Main portal at ESDC: http://archives.esac.esa.int/gaia

- online documentation
- VO compatible, TAP interface, visualization apps

Partner data centres (data available today)

- Centre de Données astronomiques de Strasbourg (CDS): http://cds.unistra.fr/gaia
- ASI Science Data Center (ASDC): http://gaiaportal.asdc.asi.it
- Astronomisches Rechen-Institut (ARI): http://gaia.ari.uni-heidelberg.de
- Leibniz-Institut fr Astrophysik Potsdam (AIP): http://gaia.aip.de

Affiliate data centres

- US Naval Observatory (USNO)
- National Astronomical Observatory of Japana (NAOJ)
- Space Telescope Science Institute (STScI)
- South African Astronomical Observatory (SAAO)
- Observatoire the Paris-Meudon (ObsPM)
- Infrared Science Archive (IRSA)

Gaia Data Release 1

- Major advance in mapping of the heavens
- Significant increase in the amount and precision of available fundamental stellar data
- Documentation online and in Astronomy & Astrophysics Special Feature
- Scientific use of the early data will improve quality of future data releases
- Major improvements already planned for Gaia DR2
- Have fun with the data!