Introduction to
Scientific Computing
with Python

Eric Jones Travis Oliphant
eric@enthought.com oliphant@ee.byu.edu

Enthought Brigham Young University
www.enthought.com http://www.ee.byu.edu/

Modifications by Christos Siopis (IAA, ULB)
Christos.Siopis@ulb.ac.be

enthought ®©


mailto:eric@enthought.com
http://www.enthought.com/
mailto:oliphant@ee.byu.edu
http://www.ee.byu.edu/

* Introduction to Python
* Numeric Computing

* Basic 2D Visualization
* SciPy (very briefly)



enthought ®©

What Is Python?

ONE LINER

Python is an interpreted programming language that allows you
to do almost anything possible with a compiled language
(C/C++/Fortran) without requiring all the complexity.

PYTHON HIGHLIGHTS

* Automatic garbage  “Batteries Included”
collection  Free

* Dynamic typing . Portable

* Interpreted and * Easy to Learn and Use
interactive

* Truly Modular
* Object-oriented



enthought ®©

Why Python for glue”

* Python reads almost like “pseudo-code” so it's easy to
pick up old code and understand what you did.

* Python has high-level data structures like lists,
dictionaries, strings, and arrays all with useful methods.

* Python has alarge module library (“batteries included”)
and common extensions covering internet protocols and
data, image handling, and scientific analysis.

* Python development is 5-10 times faster than C/C++ and
3-5 times faster than Java



enthought ®©

How is Python glue?

Parallel
Process.



enthought ®©

Why is Python good glue?

* Python can be embedded into any C or C++ application
Provides your legacy application with a powerful scripting language

instantly.
* Python can interface seamlessly with Java
— Jython www.jython.org
- JPE jpe.sourceforge.net

* Python can interface with critical C/C++ and Fortran
subroutines
— Rarely will you need to write a main-loop again.

— Python does not directly call the compiled routines, it uses
interfaces (written in C or C++) to do it --- the tools for
constructing these interface files are fantastic (sometimes
making the process invisible to you).


http://www.jython.org/
http://jpe.sourceforge.net/

enthought ®©

* C/C++ Integration
- SWIG WWW.Swig.org

— SIP www.riverbankcomputing.co.uk/sip/index.php
— Pyrex nz.cosc.canterbury.ac.nz/~greg/python/Pyrex
— boost www.boost.org/libs/python/doc/index.html
— weave Wwww.scipy.org/site_content/weave

* FORTRAN Integration
— f2py cens.ioc.ee/projects/f2py2e/

— PyFort pyfortran.sourceforge.net


http://www.swig.org/
http://www.riverbankcomputing.co.uk/sip/index.php
http://www.boost.org/libs/python/doc/index.html
http://www.scipy.org/site_content/weave
http://cens.ioc.ee/projects/f2py2e/
http://pyfortran.sourceforge.net/

enthought ®©

Simplest f2py Usage

Fortran Python Extension
File Module
>
fcopy. £
fcopymodule. so

f2py I—c fcopy.f“—m fcopy |

e ~

Compile code and build an Name the extension
extension module module fcopy.




Simplest Usage Result

Fortran file fcopy.f
C

SUBROUTINE FCOPY (AIN,N,AOUT)

C
DOUBLE COMPLEX AIN(*)
INTEGER N
DOUBLE COMPLEX AOUT (*)
DO 20 J =1, N
AOUT (J) = AIN(J)
20 CONTINUE
END

enthought ®©

>>> a = rand(1000) +
1j*rand (1000)

>>> b = zeros((1000,),’D")

>>> fcopy.fcopy(a,1000,b)

>>> import fcopy

>>> info (fcopy)
This module 'fcopy’ is auto-generated with f2py
(version:2.37.233-1545).
Functions:
fcopy(ain,n,aout)
>>> info (fcopy. fcopy)
fcopy - Function signature:
fcopy(ain,n,aout)
Required arguments:
ain : input rank-1 array('D’) with bounds (*)
n : input int
aout : input rank-1 array('D') with bounds (*)

Looks exactly like Fortran ---

but now in Python!




enthought ®©

Who is using Python?

NATIONAL SPACE TELESCOPE LAWRENCE LIVERMORE
LABORATORY NATIONAL LABORATORIES

Data processing and calibration for Scripting and extending parallel
instruments on the Hubble Space physics codes. pyMPI is their doing.
Telescope.

INDUSTRIAL LIGHT AND MAGIC

WALT DISNEY

Digital Animation Digital animation development
environment.

PAINT SHOP PRO 8 REDHAT

Scripting Engine for JASC Anaconda, the Redhat Linux installer
PaintShop Pro 8 photo-editing software program, is written in Python.
CONOCOPHILLIPS ENTHOUGHT

Qil exploration tool suite Geophysics and Electromagnetics

engine scripting, algorithm
GOOGLE development, and visualization



Language Introduction



enthought ®©

Interactive Calculator

$ python
Python 2.4.3 .......
# adding two values

>>> 1 + 1

2

# setting a variable
>> a =1

>>> a

1

# checking a variables type
>>> type (a)

<type 'int'>

# an arbitrarily long integer
>>> a = 1203405503201

>>> a

1203405503201L

>>> type (a)

<type 'long'>

# real numbers

>> b =1.2 + 3.1
>>> b
4.2999999999999998
>>> type (b)

<type 'float'>

# complex numbers
>>> ¢ = 2+1.57

>>> C

(2+1.57)

The four numeric types in Python on
32-bit architectures are:
integer (4 byte)
long integer (any precision)
float (8 byte like C’s double)
complex (16 byte)
The Numeric module, which we will
see later, supports a larger number of
numeric types.




enthought ®©

Strings

CREATING STRINGS

STRING LENGTH
# using double quotes >>> s = “12345”
>>> s = “hello world” >>> len(s)

>>> print s 5

hello world
# single quotes also work FORMAT STRINGS

>>> s = ‘hello world’ # the % operator allows you
>>> print s # to supply values to a
hello world # format string. The format
# string follows
# C conventions.
# concatenating two strings >>> s = “some numbers:”
>>> “hello “ + “world” >>> x = 1.34
‘hello world’ >>> y = 2
>>> s = “%s %f, %d” % (s,x,y)
# repeating a string >>> print s
>>> “hello ™ * 3 some numbers: 1.34, 2

‘hello hello hello ’



enthought ®©

The string module

>>> import string # replacing text in a string
>>> s = “hello world” >>> string.replace(s,’world’ \
,"Mars’)
# split space delimited words ‘hello Mars’
>>> wrd lst = string.split(s)
>>> print wrd lst # python2.2 and higher
[ ‘hello’, ‘world’] >>> s.replace(’'world’ ,’Mars’)
‘hello Mars’
# python2.2 and higher
>>> s.split() # strip whitespace from string
[ ‘hello’, ‘world’] >>> s = “\t hello \n”
>>> string.strip(s)
# join words back together ‘hello’
>>> string.join(wrd lst)
hello world # python2.2 and higher
>>> s.strip()
# python2.2 and higher ‘hello’
>>> ' ‘.join(wrd lst)

hello world



enthought ®©

Multi-line Strings

# triple quotes are used # including the new line
# for mutli-line strings >>> a = “hello\n” \
>>> a = "”"hello ... “world”
world””” >>> print a
>>> print a hello
hello world
world

# multi-line strings using
# “\” to indicate

continuation
>>> a = “hello ” \
“world”

>>> print a
hello world



enthought ®©

List objects

LIST CREATION WITH BRACKETS range( start, stop, step)

>>> 1 = [10,11,12,13,14] # the range method is helpful
>>> print 1 # for creating a sequence
(10, 11, 12, 13, 14] >>> range (5)

(6, 1, 2, 3, 4]

CONCATENATING LIST
>>> range(2,7)

# simply use the + operator (2, 3, 4, 5, 6]
>>> [10, 11] + [12,13] ’ ’ ’ ’

(10, 11, 12, 13] >>> range (2,7,2)

(2, 4, 6]

REPEATING ELEMENTS IN LISTS

# the multiply operator
# does the trick.

>>> [10, 11] * 3

(1o, 11, 10, 11, 10, 11]



Indexing

RETREIVING AN ELEMENT

# list

# indices: 0 1 2 3 4
>>> 1 = [10,11,12,13,14]
>>> 1[0]
10

SETTING AN ELEMENT

>>> 1[1] = 21
>>> print 1
(10, 21, 12, 13, 14]

OUT OF BOUNDS
>>> 1[10]

Traceback (innermost last):

IndexError: list index out of range

enthought ®©

NEGATIVE INDICES

3H H H H

negative indices count
backward from the end of
the list.

indices: -5 -4 -3 -2 -1
>>> l=[10,11,12,13,14]

>>> 1[-1]
14
>>> 1[-2]
13

‘<:> array has index=0 as

The first element in an

in C. Take note Fortran
programmers'!




enthought ®©

More on list objects

LIST CONTAINING MULTIPLE LENGTH OF A LIST
TYPES
>>> len(l)

# list containing integer,
# string, and another list.

|w

>>> 1 = [10,’eleven’,[12,13]] DELETING OBJECT FROM LIST
>>> 1[1]
\ , # use the del keyword
eleven .
5> 1[2] >>> del 1[2]
(12, 13] >>> 1
[10,"eleven’ ]
# use multiple indices to DOES THE LIST CONTAIN x ?

# retrieve elements from
# nested lists.

>>> 1[2]1[0]

12

# use in or not in

>> 1 = [10,11,12,13,14]
>>> 13 in 1

True

>>> 13 not in 1

False



enthought ®©

Slicing

var [lower :upper]

Slices extract a portion of a sequence by specifying a lower and upper
bound. The extracted elements start at lower and go up to, but do not
include, the upper element. Mathematically the range is [lower,upper).

SLICING LISTS OMITTING INDICES

# indices: 0 1 2 3 4 # omitted boundaries are
>> 1 = [10,11,12,13,14] # assumed to be the beginning
# [10,11,12,13,14] # (or end) of the list.
>>> 1[1:3]
[11, 12] # grab first three elements
>>> 1[:3]
# negative indices work also [10,11,12]
>>> 1[1:-2] # grab last two elements
(11, 12] >>> 1[-2:]
>>> 1[-4:3] [13,14]

[11, 12]



enthought ®©

A few methods for list objects

some_list.append( x ) some_list.remove( x)

Add the element x to the end Delete the first occurrence of x
of the list, some 1list. from the list.

some_list.count( x) some_list.reverse()

Count the number of times x Reverse the order of elements in
occurs i1n the list. the list.

some_list.index( x) some_list.sort( cmp )

Return the index of the first By default, sort the elements in
occurrence of x in the list. ascending order. If a compare

function is given, use it to sort

the list.



List methods In action

>>> 1 = [10,21,23,11,24]

# add an element to the list
>>> 1.append(11)

>>> print 1
[10,21,23,11,24,11]

# how many lls are there?
>>> 1l.count(11)
2

# where does 11 first occur?
>>> 1l.index (11)
3

# remove the first 11
>>> 1l.remove (1ll)

>>> print 1
[10,21,23,24,11]

# sort the list
>>> 1l.sort()
>>> print 1
[10,11,21,23,24]

# reverse the list
>>> 1l.reverse ()
>>> print 1
[24,23,21,11,10]

enthought ®©



enthought ®©

Mutable vs. Immutable

MUTABLE OBJECTS

# Mutable objects, such as
# lists, can be changed
# in-place.

# insert new values into list
>> 1 = [10,11,12,13,14]

>>> 1[1:3] = [5, 6]

>>> print 1

(10, 5, 6, 13, 14]

The cStringIO module treats
strings like a file buffer

<:> and allows insertions. It'’s
useful when working with
large strings or when speed
is paramount.

IMMUTABLE OBJECTS

# Immutable objects, such as
# strings, cannot be changed
# in-place.

# try inserting values into
# a string

>>> s = ‘abcde’

>>> s[1l:3] = ‘xy’

Traceback (innermost last):

TypeError: object doesn't support
slice assignment

# here’s how to do it

>>> s = s[:1] + ‘xy’ + s[3:]
>>> print s

'axyde'



enthought ®©

Tuples are a sequence of objects just like lists. Unlike lists, tuples are
immutable objects. While there are some functions

and statements that require tuples, they are rare. A good rule of
thumb 1s to use lists whenever you need a generic sequence.

TUPLE EXAMPLE

# tuples are built from a comma separated list enclosed by ( )
>>> t = (1,’two’)

>>> print t

(1, ‘two’)

>>> t[0]

1

# assignments to tuples fail

>>> t[0] = 2

Traceback (innermost last) :

File "<interactive input>", line 1, in ?
TypeError: object doesn't support item assignment



enthought ®©

Dictionaries

Dictionaries store key/ value pairs. Indexing a dictionary by a ey
returns the va/ue associated with it.

DICTIONARY EXAMPLE

# create an empty dictionary using curly brackets

>>> record = {}

>>> record[ ‘first’] = ‘Jmes’

>>> record|[‘last’] = ‘Maxwell’

>>> record[ ‘born’] = 1831

>>> print record

{'£first': 'Jmes', 'born': 1831, 'last': 'Maxwell'}

# create another dictionary with initial entries

>>> new _record = {‘'first’: ‘James’, 'middle’:‘Clerk’}

# now update the first dictionary with values from the new one
>>> record.update (new_record)

>>> print record

{'first': 'James', 'middle': 'Clerk', 'last':'Maxwell', 'born':
1831}




enthought ®©

A few dictionary methods

some_dict.clear() some_dict.keys()

Remove all key/value pairs from Return a list of all the keys in the
the dictionary, some dict. dictionaty.
Create a copy of the dictionary Return a list of all the values in

the dictionary.

some_dict.has_key( x ) some_dict.items( )

Test whether the dictionary Return a list of all the key/value
contains the key x. pairs in the dictionary.



enthought ®©

Dictionary methods in action

>>> d = {‘cows’: 1,’dogs’:5,

‘cats’ : 3}
# create a copy. # get a list of all values
>>> dd = d.copy() >>> d.values ()
>>> print dd [3, 5, 1]
{'dogs':5,'cats':3,'cows': 1}
# test for chickens. # return the key/value pairs
>>> d.has_key(‘chickens’) >>> d.items ()
0 [('cats', 3), ('dogs',6 5),

('cows', 1)]

# get a list of all keys # clear the dictionary
>>> d.keys () >>> d.clear ()
[ ‘cats’ ,’dogs’ ,’ cows’] >>> print d

{}



enthought ®©

Assignment

Assignment creates object references.

>>> = 1, 2

X [0, 1, 2] % q 111
# y = x cause x and y to point /
# at the same list /
>>> y = x Y
# changes to y also change x
>>> y[1] = 6 X >
>>> print x 0 6 2
[0, 6, 2] y g
# re-assigning y to a new list 0 ; 9
# decouples the two lists X '
>>> y = [3, 4]
# make y a new list equal to x Yy T 3[4
>>> y = x[:]




enthought ®©

Multiple assignments

# creating a tuple without () # multiple assignments from a
>>d=1,2,3 # tuple
>>> d >>> a,b,c = d
(1, 2, 3) >>> print b
2

# also works for lists

# multiple assignments >>> a,b,c = [1,2,3]
>>> a,b,c=1,2,3 >>> print b
>>> print b 2

2



enthought ®©

If statements

if/elif/else provide conditional execution of

code blocks.
Indendation is #of optional but part of the syntax!

IF STATEMENT FORMAT IF EXAMPLE

# a simple if statement

1f <condition>: >>> x = 10
<statements> >>> if x > 0:
elif <condition>: _ print 1
... elif x == 0:
<statements> print 0
else: ... else:
<statements> print -1

. < hit return >



enthought ®©

Test Values

* True means any non-zero number
or non-empty object

* FFalse means not true: zero, empty object, or
None

EMPTY OBJECTS

# empty objects evaluate false
>>> x = []

>>> if x:
print 1
. else:
print O
. < hit return >



enthought ®©

For loops

For loops iterate over a sequence of objects.

for <loop var> in <sequence>:

<statements>
TYPICAL SCENARIO LOOPING OVER A LIST
>>> for 1 in range (5): >>> 1=[‘dogs’ ,’cats’ , 'bears’]
print 1, >>> accum = ‘'’
. < hit return > >>> for item in 1:
012 3 4 A accum = accum + item
LOOPING OVER A STRING # or: accum += item
.. accum = accum + ‘' !
>>> for i in ‘abcde’: ... < hit return >
print 1, >>> print accum
. < hit return > dogs cats bears

a b c de



enthought ®©

While loops

While loops iterate until a condition 1s met.

while <condition>:

<statements>
# the condition tested is # breaking from an infinite
# whether lst is empty. # loop.
>>> 1lst = range (3) >>> i =0
>>> while 1lst: >>> while True:
print 1lst R if i < 3:
1st = 1st[1l:] . print 1,
. < hit return > . . else:
[0, 1, 2] . break
[1, 2] ... i=3i+1
[2] ... < hit return >

01 2



enthought ®©

Anatomy of a function

The keyword def Function arguments are listed
indicates the start separated by commas. They are passed
of a function. by assignment. More on this later.

N | |

def add(arg0, argl):

Indentation is | —

used to indicate / a = argo + argl \

the contents of return a A colon ( : ) terminates
the function. It the function definition.
1S not optional,

but a part of the \

syntax. An optional return statement specifies

the value returned from the function. If
return 1s omitted, the function returns the
special value None.




enthought ®©

Our new function in action

# We’'ll create our function # how about strings?
# on the fly in the >>> x = ‘foo’
# interpreter. >>> y = ‘bar’
>>> def add(x,y) : >>> add(x,y)
a=x+y ‘foobar’
return a
# test it out with numbers # functions can be assigned
>>> x = 2 # to variables
>>> y = 3 >>> func = add
>>> add (x,y) >>> func (x,y)
5 ‘foobar’

# how about numbers and strings?
>>> add(‘abec',1l)
Traceback (innermost last):

line 2, in add
TypeError: cannot add type "int" to string



enthought ®©

Modules

[ej@bull ej]$ python exl.py
6, 3.1416

PI = 3.1416 FROM INTERPRETER

# load and execute the module
>>> import exl

# exl.py

def sum(lst):
tot = 1st[0]

for value in 1lst[1l:]: 6, 3.1416 .
tot = tot + value # get/set a module variable.
>>> exl1.PI

return tot
3.1415999999999999

>>> ex1.PI = 3.14159

>>> exl.PI
3.1415899999999999

# call a module variable.
>>> t = [2,3,4]

>>> exl.sum(t)

9

l1=10,1,2,3]
print sum(l), PI




enthought ®©

Modules cont.

INTERPRETER EDITED EX1.PY

# load and execute the module # exl.py version 2
>>> import exl

6, 3.1416 PI = 3.14159

< edit file >

# import module again def sum(lst):

>>> import exl tot = 0

# nothing happens!!! for value in 1lst:

tot = tot + wvalue
return tot

# use reload to force a
# previously imported library 1=1[0,1,2,3,4]
# to be reloaded. print sum(l), PI
>>> reload(exl)
10, 3.14159




enthought ®©

Modules cont. 2

Modules can be executable scripts or libraries or both.

EX2.PY EX2.PY CONTINUED

“ An example module “ def add(x,y):
” Add two wvalues.”
PI = 3.1416 a=x+y
return a
def sum(lst):
7 Sum the wvalues in a def test():
list. l=10,1,2,3]
A assert( sum(l) == 6)
tot = 0 print ‘test passed’
for value in 1l1lst:
tot = tot + value # this code runs only if this
return tot # module is the main program
if name == ' main ':

_Eést(y_



enthought ®©

Setting up PYTHONPATH

PYTHONPATH is an environment variable (or set of registry entries on Windows) that
lists the directories Python searches for modules.

UNIX -- .cshrc

The easiest way to set the search paths is 1! note: the following should !!
using PythonWin’s Tools->Edit Python Path 1" 311 be on one line N

menu item. Restart PythonWin after
changing to insure changes take affect.

setenv PYTHONPATH
SPYTHONPATH: SHOME/aces

Registry Editor: Sul"l:ff -0l x|

{:l Help Marme | Ciaka
-] InstallPath (Default)  ciaces
{:l Modules
EI{:I PythonPath

:Eggﬁi PYTHONPATH=SPYTHONPATH: SHOME/aces
-3 Pythoruwin export PYTHONPATH
- scipy
{:| kemp
{:| whk

- win3z2

{:I wind2com 1| I LI

UNIX -- .bashrc




enthought ®©

Setting up PYTHONSTARTUP

PYTHONPATH is an environment variable (or set of registry entries on Windows) that
points to a Python file to be executed every time we start the Python she//.

UNIX -- .cshrc

setenv PYTHONSTARTUP S$HOME/bin/py-modules/python-startup.py

UNIX -- .bashrc

setenv PYTHONSTARTUP S$HOME/bin/py-modules/python-startup.py

EXAMPLE python-startup.py FILE

print 'from numpy import *'
from numpy import *

print 'import mp'
import mp



enthought ®©

Classes

SIMPLE PARTICLE CLASS

>>> class particle:
# Constructor method
def init (self,mass, velocity):
# assign attribute values of new object
self.mass = mass
self.velocity = velocity
# method for calculating object momentum
def momentum(self) :
return self . mass * self.velocity
# a “magic” method defines object’s string representation
def  repr (self):
msg = "(m:%2.1f, v:%2.1f)" % (self.mass,self.velocity)
return msg

EXAMPLE

>>> a = particle(3.2,4.1)
>>> a

(m:3.2, v:4.1)

>>> a.momentum ()
13.119999999999999



enthought ®©

Reading files

FILE INPUT EXAMPLE PRINTING THE RESULTS

>>> results = [] >>> for 1 in results: print i
>>> £ = open(‘/home/rcs.txt’,'r’) [100.0, -20.30.., -31.20..]

[200.0, -22.70.., -33.60..]
# read lines and discard header

>>> lines = f.readlines()[1:]

>>> f£.cl
close() EXAMPLE FILE: RCS.TXT

>>> for 1 in lines: #freq (MHZ) vv (dB) hh (dB)
e # split line into fields 100 -20.3 ~-31.2
fields = 1.split()
# convert text to numbers
freq = float(fields[0])
vv = float(fields[1l])
hh = float(fields[2])
# group & append to results
all = [freq,vv,6hh]
. results.append(all)
. < hit return >

200 -22.7 -33.6



enthought ®©

More compact version

ITERATING ON A FILE AND LIST COMPREHENSIONS

>>> results = []
>>> f = open(‘/home/rcs.txt’,’'r’)
>>> f.readline()
‘#freq (MHz) vv (dB) hh (dB)\n'
>>> for line in £:
all = [ float(val) for val in line.split() ]
results.append (all)
. < hit return >
>>> for i in results:
print 1
. < hit return >

EXAMPLE FILE: RCS.TXT

#freq (MHz) wvv (dB) hh (dB)
100 -20.3 -31.2
200 -22.7 -33.6



enthought ®©

Same thing, one line

OBFUSCATED PYTHON CONTEST...

>>> print [ [ float(val) for val in line.split() ]

for line in open("/home/rcs.txt","r"
if 1[0] !'="#"

]
EXAMPLE FILE: RCS.TXT

#freq (MHz) wvv (dB) hh (dB)
100 -20.3 -31.2
200 -22.7 -33.6



enthought ®©

import numpy as N

def rfn(FName, CommentCharacter='#"',Type=float,CheckFile=True):
Rows = []
for line in open(FName, 'r'):
if CheckFile:
# Truncate line if CommentCharacter 1is present
# (always truncate '\n' in the end when line.find returns -1)

line = line[:line.find(CommentCharacter)]

# Skip empty lines
if not line.strip(): continue

# Split line in words, then convert to Type
Rows.append( [Type(x) for x in line.split()] )

# Make sure all Rows have the same number of columns!

lengths = [len(x) for x in Rows]
if lengths.count(lengths[0]) != len(lengths):
raise RuntimeError, 'mp.rfn(): Rows in file ' + FName + \

' contain variable number of columns!'

return N.array (Rows)



enthought ®©

Exception Handling

ERROR ON LOG OF ZERO

import math

>>> math.l1logl0(10.)

1.

>>> math.l1logl0(0.)

Traceback (innermost last):
OverflowError: math range error

CATCHING ERROR AND CONTINUING

>>> a = 0.

>>> try:
r = math.logl0(a)

except OverflowError:

print ‘Warning: overflow occurred. Value set to 0.’
# set value to 0. and continue
r =20.

Warning: overflow occurred. Value set to 0.

>>> print r

0.0



enthought ®©

Pickling and Shelves

Pickling 1s Python’s term for persistence. Pickling can write
arbitrarily complex objects to a file. The object can be
resurrected from the file at a later time for use in a program.

>>> import shelve

>>> f = shelve.open(‘c:/temp/pickle’ ,’'w’)
>>> import ex material

>>> epoxy gls = ex material.constant material(4.8,1)
>>> f[‘epoxy glass’] = epoxy gls

>>> f.close()

< kill interpreter and restart! >

>>> import shelve

>>> f = shelve.open(‘c:/temp/pickle’,’'r’)
>>> epoxy glass = f[ ‘epoxy glass’]

>>> epoxy glass.eps(100e6)

4.249%e-11



enthought ®©

Sorting

THE CMP METHOD CUSTOM CMP METHODS

# The builtin cmp(x,y) # define a custom sorting
# function compares two # function to reverse the
# elements and returns # sort ordering

# -1, 0, 1 >>> def descending(x,y) :
#Fx< y-—->-1 ... return -cmp (x,y)

# x=y --> 0

# x> y--> 1

>>> cmp(0,1)

-1

# By default, sorting uses # Try it out

# the builtin cmp() method >>> x.sort (descending)
>>> x = [1,4,2,3,0] >>> x

>>> x.sort() (4, 3, 2, 1, 0]

>>> X

(6, 1, 2, 3, 4]



enthought ®©

Sorting

SORTING CLASS INSTANCES

# Comparison functions for a variety of particle values
>>> def by mass(x,y):
return cmp (x.mass,y.mass)
>>> def by velocity(x,y):
return cmp (x.velocity,y.velocity)
>>> def by momentum(x,y):
return cmp (x.momentum() ,y.momentum())

# Sorting particles in a list by their various properties
>>> x = [particle(1.2,3.4) ,particle(2.1,2.3) ,particle(4.6,.7)]

>>> x.sort (by mass)

>>> X

[(m:1.2, v:3.4), (m:2.1, v:2.3), (m:4.6, v:0.7)]
>>> x.sort (by_velocity)

>>> X

[(m:4.6, v:0.7), (m:2.1, v:2.3), (m:1.2, v:3.4)]
>>> x.sort (by momentum)

>>> X

[(m:4.6, v:0.7), (m:1.2, v:3.4), (m:2.1, v:2.3)]



Show:

Brief Tour of the Standard Library I & 11

(Chapters 10 & 11 of Python Tutorial)



enthought ®©

Numpy



enthought ®©

* Offers Matlab/IDL-ish capabilities within Python

* Web Site
—http://www.scipy.org/NumPy
* Developers (initial coding by Jim Hugunin)

) PaUI_DUb_OUIS Numarray (nearing stable) is

* Travis Oliphant optimized for large arrays.

* Konrad Hinsen Numeric is more stable and is

o Many more. .. faster for operations on many
small arrays.




enthought ®©

Array Operations

IMPORT NUMERIC MATH FUNCTIONS

>>> from numpy import * # Create array from 0 to 10

>>> import numpy >>> x = arange(1l1l.)

>>> numpy. version _ _
- - # multiply entire array by

1.0.2 # scalar value
22> 2 = @eh/io.
>>> a
>>> a = array([1,2,3,4]) 0.628318530718
>>> b = array([2,3,4,5]) >>> a*x
>>>a +b array ([ 0.,0.628,..,6.283])

array([3, 5, 7, 9])

>>> print a + b # apply functions to array.

13 > 7 9] >>> y = sin(a*x)
Numeric defines the following >>>y
1<:>conﬂmﬁg array ([ 0.00000000e+00,
pi = 3.14159265359 5.87785252e-01,
e = 2.71828182846

-2.44929360e-16])



enthought ®©

Introducing Numeric Arrays

MULTI-DIMENSIONAL ARRAYS

>>> a = array([[ O, 1, 2, 3],
[10,11,12,13]])
>>> a
array([[ 0, 1, 2, 3],
[10,11,12,13]11])

(ROWS,COLUMNS)

>>> a.shape
(2, 4)

GET/SET ELEMENTS

>>> al[l,3]

13 ‘ t————column
row

>>> a[l,3] = -1

>>> a

array([[ 0, 1, 2, 31,
[10,11,12,-111)

e Show:

— Numpy Tutorial
(HTML)

— Numpy Example List
(HTML)

— Matplotlib Demo
— Masked Arrays



enthought ®©

Array Slicing

SLICING WORKS MUCH LIKE
STANDARD PYTHON SLICING

>>> al[0,3:5]
array ([3, 4])

>>> a[4d:,4:]
array ([ [44, 457,
[54, 535]11)

>>> al[:,2]
array([2,12,22,32,42,52])

STRIDES ARE ALSO POSSIBLE

>>> al[2::2,::2]
array ([[20, 22, 24],
[40, 42, 44]])




enthought ®©

Universal Function Methods

The mathematic, comparative, logical, and bitwise operators that
take two arguments (binary operators) have special methods that
operate on arrays:

op.reduce (a,axis=0)
op.accumulate (a,axis=0)
op.outer (a,b)
op.reduceat (a,indices)



enthought ®©

Array Functions — take ()

take (a,indices,axis=0)
Create a new array containing slices from a. indices is an array

specifying which slices are taken and axi s the slicing axis. The new array
contains copies of the data from a.

ONE DIMENSIONAL MULTIDIMENSIONAL

>>> a = arange(0,80,10) >>> y = take(a,[2,-2], 2)
>>> y = take(a,[1,2,-3]) 2
>o> pr:l.nt y 0f’1 I A A A
[10 20 50] Lttt
a ]
a |0 |10 20 |30 |40 [50 |60 |70 A
i A




enthought ®©

Array Functions — choose ()

>>> y = choose(choice array, (c0,cl,c2,c3))

c0 cl c?2 c3

BERE s[5 (5[ )[2 ]2 ]2 9
314 |5 515 |5 21202
678 5 (5 |5 2 12 ]2

choice array

00 |0
1123
0|1 |3
y (0|1 ]2
512 19




enthought ®©

Example - choose ()

CLIP LOWER VALUES TO 10 CLIP LOWER AND UPPER
VALUES

>>> a

array([[ O, 1, 2, 3, 41,
(10, 11, 12, 13, 147,
(20, 21, 22, 23, 2411)

>>> 1t10 = less(a,10) >>> 1t = less(a,10)
>>> 1t10 >>> gt = greater(a,1l5)
array ([[1, 1, 1, 1, 17, >>> choice = 1t + 2 * gt
[0, 0, 0, 0, 0], >>> choice
(0, O, O, 0, 011) array ([[1, 1, 1, 1, 1],
>>> choose (1t10, (a,10)) (6, o, 0, 0, 0J,
array ([[10, 10, 10, 10, 107, (2, 2, 2, 2, 2]])
(10, 11, 12, 13, 14], >>> choose(choice, (a,10,15))
(20, 21, 22, 23, 241]) array([([1l0, 10, 10, 10, 107,

(10, 11, 12, 13, 14],
(15, 15, 15, 15, 15]1])



enthought ®©

Array Functions — where ()

>>> y = where (condition, false, true)

false true

0 (1 ]2 2 |2 |2
31415 2 |2 |2
6 |7 |8 2 |2 |2

condition




enthought ®©

Array Functions — compress ()

compress (condition,a,axis=-1)
Create an array from the slices (or elements) of a that correspond to the
elements of condition that are "true". condition must not be longer
than the indicated axis of a.

>>> compress (condition,a,0)

condition a

PO (11 (12 (13 [14 |13
20 |21 |22 |23 |24 |25
40 |41 |42 |43 |44 |45

f 20 |21 [22 |23 |24 |25
0 30 |31 [32 {33 |34 )35

\ [




enthought ®©

Array Functions — concatenate ()

concatenate((al,al, .., aN) , axis=0)
The input arrays (a0, al, .., aN) will be concatenated along the given
axis. They must have the same shape along every axis except the one
given.

< |01 ]2 y |50 |51 52
1011 |12 00 (61 |62

>>> concatenate((x,y)) >>> concatenate((x,y),1) >>> array((x,y))

10 |11 12 /
50 |51 |52 0 |1 |2 [50 [51 [52 0|1 |2
60 |61 |62 10 111 [12 [60 [61 |62 10 {11 |12




enthought ®©

Array Broadcasting

0 (1 |2 0 [0 |0 0 [ 1|2 0 [0 |0
0 [ 1|2 + 10 (10 [10 EIRERE + 10 110 |10 )
0 [1 |2 20 |20 |20 011 |2 20 |20 |20
0 (1 |2 30 |30 [30 011 |2 30 130 (30
4x3 3
0 [0 |0 0|1 |2 0 [0 |0 0 (1|2 " P
10 110 [10 + [t [ro ] + : 0 11 g
20 |20 |20 20 |20 |20 ITRIY
30130 (30 30 130 {30
stretch|?! [} |31

4x1 3 o
0 HERE 0 0|12
10 10

+ = + =
20 20
30 30 l

—_
stretch stretch



enthought ®©

Broadcasting Rules

The trailing axes of both arrays must either be 1 or have the same
size for broadcasting to occur. Otherwise, a “ValueError:
frames are not aligned” exception is thrown.

mismatch!

x3 4

10 (10|10

+
20 (20|20
30130




enthought ®©

NewAXIs

NewAx1is 1s a special index that inserts a new axis in the array at
the specified location. Each NewAx1i s increases the arrays
dimensionality by 1.

>>> y = a[NewAxis, :] >>> y = a[:,NewAxis] >>> y = a[:,NewAxis,
>>> shape (y) >>> shape (y) . NewAxis]
(1, 3) (3, 1) >>> shape (y)

— (3, 1, 1)

° A
1
0 (1 ]2 0




enthought ®©

NewAxis in Action

>>> a = array((0,10,20,30))
>>> b = array((0,1,2))
>>> y = a[:,NewAxis] + b
0 0 (1 |2 0 (1 |2
10 10 (11 [12
+ =
20 20 (21 (22
30 30 (31132




enthought ®©

Pickling

When pickling arrays, use binary storage when possible to save
space.

>>> a = zeros((100,100) ,Float32)
# total storage

>>> a.itemsize () *len(a.flat)
40000

# standard pickling balloons 4x
>>> ascii = cPickle.dumps (a)

>>> len(ascii)

1600061

# binary pickling is very nearly 1x
>>> binary = cPickle.dumps(a,l)
>>> len(binary)

40051

<>

Numeric creates an intermediate string pickle when pickling arrays to a file resulting
in a temporary 2x memory expansion. This can be very costly for huge arrays.




enthought ®©

Performance Issues

* Interpreted, dynamic: Performance hit!
* Tim Hochberg's suggestion list:
Think about your algorithm.
Vectorize your inner loop:

DO NOT DO THIS: DO THIS:
z = zeros (10) z =x *y
for i in xrange (10):
z[1] = x[1] * y[1i]
Eliminate temporaries. Step 0 should

Ask for help. probably be
repeated after

Recode in Fortran/C/Pyrex/weave/... | every step!
Accept that your code will never be fast.



enthought ®©

SciPy



enthought ®©

Overview

* Developed by Enthought and Partners
(Many thanks to Travis Oliphant and Pearu Peterson)

* Open Source Python Style License
* Available at www.scipy.org

CURRENT PACKAGES

* Special Functions (scipy.special) * Input/Output (scipy.io)

* Signal Processing (scipy.signal) * Genetic Algorithms (scipy.ga)

* Fourier Transforms (scipy.fftpack) - Statistics (scipy.stats)

* Optimization (scipy.optimize) * Distributed Computing

- General plotting (scipy.[plt, xplt, (scipy.cow)
gplt]) * Fast Execution (weave)

* Numerical Integration * Clustering Algorithms
(scipy.integrate) (scipy.cluster)

*Linear Algebra (scipy.linalg) * Sparse Matrices* (scipy.sparse)


http://www.scipy.org/

enthought ®©

Input and Output

scipy.io --- Reading and writing ASCII files

textfile.txt

Student Testl Test2 Test3 Test4

Jane 98.3 94.2 95.3 91.3

Jon 47.2 49.1 54.2 34.7
. LG g i B Read from column 1 to the end

Read from line 3 to the end

>>> a = io.read array(‘textfile.txt’,columns=(1,-1),lines=(3,-1))

>>> print a

[[ 98.3 94.2 95.3 91.3]
[ 47.2 49.1 54.2 34.7]
[ 84.2 85.3 94.1 76.4]]

>>> b = io.read array(‘textfile.txt’, columns=(1,-2),lines=(3,-2))
>>> print b

[[ 98.3 95.3] Read from column 1 to the end every second column
[ 84.2 94.11]

Read from line 3 to the end every second line




enthought ®©

Input and Output

scipy.io --- Reading and writing raw binary files

fid = fopen(file_name, permission='"rb', format="n")

Class for reading and writing binary files into Numeric arrays.

Methods

*file_name The complete path name to read read data from file and return
the file to open. Numeric array

*permission  Open the file with given write write to file from Numeric array
permissions: ('r', 'w', 'a’) fort read read Fortran-formatted binary data
for reading, writing, or from the file.

appending. This is the same fort_write write Fortran-formatted binary data
as the mode argument in the to the file.
builtin open command. rewind rewind to beginning of file

*format The byte-ordering of the file: size get size of file
(['native’, 'n'], [ieee-le’, ', seek seek to some position in the file
['ieee-be’, 'b") for native, little- tell return current position in file

endian, or big-endian. close close the file



enthought ®©

Input and Output

scipy.io --- Making a module out of your data

Problem: You'd like to quickly save your data and pick up again where you left
on another machine or at a different time.

Solution: Use io.save (<filename>, <dictionary>)
To load the data again use import <filename>

SAVING ALL VARIABLES SAVING A FEW VARIABLES

>>> io.save(‘allvars’ ,globals()) >>> io.save(‘fewvars’,{‘'a’:a,’b’:b)
later later
>>> from allvars import * >>> import fewvars

>>> olda = fewvars.a

>>> oldb = fewwvars.b



