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Abstract

In the inner crust of a neutron star, at digies above the “drip”tireshold, unbounttonduction”
neutrons can move freely past duigh the ionic lattice formed by the nuclei. The relative current
densityn’ = no' of such conduction neutrons will be related to the corresponding mean particle
momentump; by a proportionality relation of the form’ = Kp' in terms of a physically well
defined mobility coefficientC whose value in this context has not been calculated before. Using
methods from ordinary solid state and nuclear physics, a simple quantum mechanical treatment based
on the independent particle approximation, is used here to formkilae the phase space integral
of the relevant group velocity over the neutron Fermi surface. The result can be described as an
“entrainment” that changes the ordinary neutron mas$s a macroscopic effective mass per neutron
that will be given—subject to adoption of a convention specifying the precise number deofttye
neutrons that are considered to be “free"—#hy = n /K. The numerical evaluation of the mobility
coefficient is carried out for nuclear configurations of the “lasagna” and “spaghetti” type that may
be relevant at the base of the crust. Extrapolation to the middle layers of the inner crust leads to the
unexpected prediction that, will become very large compared with.
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1. Introduction

The main purpose of this article is to show how a mean field treatment of neutron
star crust matter can be used to address the previously unsolved problem of evaluating
a quantity, namely the relevant neutron mobility coeffici€nthat is essential for the as-
trophysical applications that will be described in a separate article [1]. In terms of the
relevant number density of effectively unbound neutrons, this coefficient determines
a corresponding effective mass, = n/KC that characterises ¢ir average motion on a
macroscopic scale (meaning one that is large compared with the spacing between nuclei)
and that we therefore refer to as the macro mass, to distinguish it from the microscopic
effective massyn® say, characterising the dynamics of the neutrons on subnuclear scales.
Whereasn® is well known to be typically rather smaller than the ordinary neutron mass
we reach the previously unexpected conclushat there is likely to be a strong “entrain-
ment” effect whereby the macro mass will typically become large, and in some layers
extremely large, compared with.

A secondary purpose of this article is to draw the attention of nuclear theorists to the
potentialities of the almost entirely unexplofanch of theoretical astrophysical nuclear
physics that needs to be developed for this and many other purposes. The only relevant
work of which we are aware so far is that Oyamatsu and Yamada [2], who appear
to be the only ones to have taken proper account of the neutron scattering by the nuclei
inside the inner crust by the use of approf®iBloch type periodicity conditions of the
kind commonly employed for the treatment of electrons in ordinary terrestrial solid state
physics. Their treatment however was restricted to a simple one-dimensional model.

Under the conditions of ordinary terrestrial solid state physics, and even at the much
higher densities characterising the matter in a white dwarf star, long range electric forces
keep the nuclei so far apart that, in so far as the much stronger but short range nuclear
interactions are concerned, each individoatleus can be treated separately as if it were
isolated. Until quite recently [2such a separate treatmenimdividual nuclei (considered
as if isolated each in its own cell—with \@fier—Seitz type boundary conditions) has been
used in nearly all quantum mechanical caltiolas on neutron star crust matter since the
pioneer work of Negele and Vautherin [3]. That kind of approximation is fully justifiable
in the outer crust, where the densities are not too much greater than those found in a white
dwarf. However, such a treatment can no longer be considered entirely satisfactory in the
inner crust, meaning the part with density above the “neutron drip” threshold at about
101 g/cm®, where there are unconfined neutrons that travel between neighbouring nuclei,
which thereby cease to be effectively isolated from one another.

While desirable for accuracy throughout the innrust, a proper collective rather than
individual treatment of the nuclei becomes not just desirable but absolutely essential for
treating the problem with which Oyamatsu and Yamada [2,4] were concerned, namely that
of the nuclear matter inside neutron star crust. Such a treatment is also essential for treating
the problem with which the present work is concerned, namely that of stationary but non-
static configurations in which a neutron current flows relative to the lattice formed by the
nuclei, something that obviously cannot be discussed in the usual approach that treats the
nuclei as if they were isolated in individual (e.g., Wigner Seitz type) boxes.
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The flow of neutrons is treated here as a perturbation of a zero temperature ground state
characterised just by the location of théexant Fermi surface in momentum space. We
thereby obtain provisional rough estimategtod relevant mobility coefficient which sug-
gest that (unlike what occurs in the fluid core and on a microscopic scale) the macro mass
m, that effectively charactéses the neutron motion on aatroscopic scale can become
very large compared with the ordinary neutron masgarticularly in the middle part of
the conducting layer, for which three-dimensional numerical results will be presented in
a follow up article [6]. The present article deals more specifically with simplified rod and
plate type models that are relevant near thestcore interface, where the mass enhance-
ment will be less extreme.

Bulgac, Magierski and Heenen have recently pointed out the importance of shell ef-
fects induced by unbound neutrons in neutron star crust by evaluating the Casimir energy
for neutron matter in the presence of inhomogiges from a semiclassical approach and
more recently by performing a Skyrme HadFock calculation with ordinary periodic
boundary conditions (see [7,8] and referentte=rein). However, this kind of boundary
conditions does not properly account for Bragatsering of dripped neutrons and is only
a particular case of the more geakBloch type boundary conditions.

In the absence of any previous quantum mechanical calculation whereby nuclei on a
crystal lattice are treated collectively (apom the 1D calculation previously mentionned
[2]), even at the simplest level of approximation, we shall adopt the simple model suggested
by Oyamatsu and Yamada, supplemented with Bloch type boundary conditions, in order
to estimate the effective neutron mass. This model treats the neutrons as independent
fermions subject to an effective background potential. We wish to draw the attention of
nuclear theorists to the problem of incladiBloch boundary conditions in more sophisti-
cated approximation schemes as a challenge for future work.

In the mean time, experience with the analogous problem of electron transport in or-
dinary solid state physics suggests that the results obtained from the Oyamatsu—Yamada
type treatment used here should not be too bad as a first approximation. Further encourage-
ment comes from our own recent attempt to take up the challenge of allowing for coupling
by an appropriate adaptation of the standard BCS pairing theory on which the predic-
tion of neutron superfluidity (in the relevant low to moderate temperature range) is based:
the upshot [9] is that (although it is essentiat the inhibition of resisvity) as far as the
“entrainment” phenomenon is concerned the effect of the ensuing “gap” will not be very
large nor very difficult to calculate.

2. Microscopic description of conduction neutronsin theinner crust
2.1. Single-particle Schrédinger equation

The basic principle of the conductivity model we wish to adapt from ordinary solid state
theory to the context of a neutron star crust is that the “conduction band”, and perhaps also
some of the highest “confined” levels, can be analysed within the independent particle ap-
proximation, in terms of energy eigenstates for a single particle described by a Bloch type
wave functiong, satisfying the Bloch periodic boungaconditions as discussed below.
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In the rest frame of the crust, with respect to which the system will be assumed to be in
stationary equilibrium, the single particle wave function will be taken to be governed by a
Hamiltonian operatol that is given by

2o, VY

H=-h VI-Zm—GBVj—IrV, (2.1)
wherey/ is just the space metric, whilg is the single particle potential, ama® is the
relevant local effective mass parameter.

The potentialV and the effective mass® will be periodic in the case of a regular crys-
talline solid lattice, though not for a fluid configuration such as will be relevant at higher
temperatures. The value of the effective potentialand the associated deviation of the
effective mass:® from m) is supposed to allow not just for the attraction of the confined
protons in the nuclei but also for the mean effect of the other fermions, which are electrons

in the familiar solid state applications, bututens in the context under consideration here.
2.2. Boundary conditions

The preceding considerations apply even igptered (glass like or liquid) configu-
rations, but in order to proceed we shall now restrict our attention to cases for which the
nuclei are assumed to be fixed and locally distributed in a regular crystal lattice configura-
tion, in which an elementary cell consists of a parallelopiped of voluWgagsay spanned
by a triad of basis vectors dabelled by an index with values= 1, 2, 3, so that the system
is invariant with respect to translations generated by vectors of the form

T=1%, 2.2)

for integer values of the coefficient$ (in the following summation over repeated indices
is assumed). This so-called adiabatic orBeOppenheimer approximation is justified by
the large difference between the neutron and nucleus masses, since typically each nucleus
contains several hundred nucleons [10].

It follows directly from the well-known Floquet—Bloch theorem [11] that the single
particle wave function has to sdiishe following boundary conditions

o{r +T) = e* Top{r, (2.3)

where k is the Bloch momentum covector.

It will therefore suffice to solve the Schrédinger equation just inside a single elementary
cell. Instead of using a primitive cell of parallelopiped, it is convenient for many purposes
to work instead with the Wigner—Seitz (W-S) cell defined as the set of points that are
closer to a given lattice node than to any ott&uch a cell exhibits the full symmetry of
the lattice. Its shape is determined by the crystal structure, a polyhedron in general, for
instance, a cube in a simple cubic lattice. This exactly defined W=S cell should not be
confused with the widely employed eponymous “W-S approximation” [12] which consists
in replacing this cell by a sphere (or more geaalgrany convenient cell that simplifies the
analysis).

The Bloch momentum k takes values inside the first Brillouin zone (B-Z), which is the
W-S cell of the reciprocal lattice whose nodes are located &atdgl* for integer values
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of the coefficientd,, where the dual basis vectorsdre defined by the following scalar
products

9. e, =278%, (2.4)

the 2r normalization factor being introduced for convenience.

It must be emphasized that the single particle wave function will have to satisfy the
relation (2.3) between two opposite faces of ttell. This means inarticular that the
Schrddinger equation has to be solved dachwave vector k inside the first B-Z. The
ordinary periodi boundary conditions on the cell, which have been recently applied by
Magierski and Heenen [8], are thus only a restricted subset of solutions, namely those with
k=0.

For each momentum Kk, there exists only a tBse set of energy eigenvalues satisfying
the Bloch boundary conditions. The single pdetienergy spectrum is therefore a collec-
tion of sheets in momentum space, each sheetlydeing referred as a band (labelled by
the principal quantum number).

3. Microscopic dynamicsin mean field of lattice

3.1. From microscopic to macroscopic observables

The linearisation involved in the neglect of direct two body or many body interactions
in such a mean field treatment excludes allowance for higher order effects such as the
pairing responsible for a superfluid energy gap, but as discussed in a separate article [9],
this limitation should not matter too much for the evaluation of the basic equation of state
of the fluid, since the main effect of superfluidity is not to modify the equation of motion
but just to restrain the class of the admissible solutions (by allowing only those that are
irrotational).

The main limitation on the use of such a linearisation is that it makes sense only for
configurations that do not differ too much frncthe static reference configuration on which
the estimation of the effective potential energy functiois based.

3.2. Fermi surface in ground state configuration

The zero temperature configuration is obtained by minimising an energy dénsity
subject to the constraint of a given value of the neutron dengitdefined by
[ %

) @)
The energy density is expressible in terms of the single particle energies (in this work, we

shall use braces instead of ordinary bracketdtinctional dependence, in order to avoid
possibly confusion with simple multiplication)

Hox = Efklok (3.2)

(3.1)

nn
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by an expression of the form
d*k
2n)¥
where, as a standard postulate, the contributi¢@} is ignored in the minimisation pro-
cedure. This means that all single particle states of energy up to but not beyond some

particular Fermi levely say, are occupied. This Fermi energy specifies the “Fermi sur-
face”, namely the locusSg say, in momentum space, where

E(K) = p. (3.4)

It must be emphasised that the Fermi surface will in general consiisobnnected
pieces unlike the homogenous case in which the Fermi surface is simply a sphere. From
the property thaf{k} = £{—k}, the ground state is thus completely symmetric in the sense
that its total momentum densityd®k k' vanishes. This is a generalized version of Unsold
theorem [13] according to which the all elemh wave function of a closed shell atom is
spherically symmetric.

Uzmm+/&m (3.3)

3.3. Minimal conducting configurations

Our main concern in the present analysis is with current carrying configurations, as
characterised by some given value of the physically well defined number current density
with componenta’ given by

. - &3k
i | 35
" / ’@n? (35
in which the transport velocity’ is given by the formula
. 193&

vl=——.
h Ok;
The kind of current carrying configurations that will presumably be relevant in the low
temperature limit will be those for which the energy dengitys minimised for a given
value of the neutron density, subject to the further constraint that the number current
density also has the prescribed vahie It is evident that this constrained minimisation
condition requires that the occupied stash®uld consist just of those subject to an in-
equality of the form

E<u+pivt 3.7)

for some fixed covector whose constant compongntsgve been introduced as Lagrange
multipliers. The phase space volume specified in this way will have a boundary charac-
terised by the condition

E=p+piv', (3.8)

which specifies a modified Fermi surfacesay. The constraint of having a finite current
breaks the symmetry and will thus necessarily lead to a new ground state with a non-
vanishing total momentum density vecgf)d3k k' #0.

(3.6)
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Fig. 1. Sketch of energy against wave number, showing uniform displacement attributable to current.

3.4. The uniform displacement of the Fermi surface

To justify the use of a Schrddinger type Hamiltonirinvolving an effective potential
of the same form as in the zero current casepeed to assume that (as will presumably be
the case in the relevant context of pulsar glitches) the current dessgygmall enough to
be treated by linear perturbation theory. This means that the Lagrange multipsieould
itself be considered just as a first order perturbation, having zero yalze in the static
unperturbed configuration, ang = §p; in the perturbed current carrying configuration.
For a given (unchanged) value of the chemical poteptjahe difference between the new
value (3.8) and the old value (3.4) of the Fermi energy I&vealill be given to first order
by 8€ = 8(p;v') = v'8p; and thus in terms of the perturbed valuemfsimply by

8E = piv'. (3.9)

This change in energy can be interpreted emd attributable to a phase space displace-
mentsk;. Since this change will be given, according to (3.6), by

8E = hv' 8k;, (3.10)

it can be seen that the simplest possibility is to take the displacement to haweifibren
value given just by

héki = pi (3.11)

as illustrated on Fig. 1.
3.5. Relation between current and momentum

The relation (3.11) means that (in the infinitesimal limit) the Lagrange multippgers
can be physically interpreted simply as components afiform pseudo momentum dis-
placement of the occupied phase space region, and of its “Fermi surface” boundary.
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The effect of this displacemenndhe Fermi surface eIemenS,’Qas given—in terms of
the corresponding surface measure elemefi—<by

dSE = (v'/v) dSF, (3.12)
will be to sweep out an infinitesimal phase space volume element given by
nd%k = p; dSE. (3.13)

It follows that, for the integral over the occupied region of any phase space funftibe
difference between the value for the dissped (conducting) configuration and the value for
the non-conducting reference configuration will be given (to linear order) by the formula

h(s/fd3k=p,»?§fdsé, (3.14)
F

in which it is to be understood that the integral on the right is taken over the entire Fermi
surface.

We have already pointed out that the energy funcfiomill be symmetric with respect
to the origin, hence it followshat the Fermi surface elemenﬁédwill be antisymmetric
about the origin so that its unweighted integfaldSt will self cancel to give zero. We
can thus see from (3.14) that for any phase space fungtitivat is symmetric about the
origin the corresponding integral will be uneéfted by the displacement, i.e., we shall get
s f d3k = 0. This contrasts with the case of an antisymmetric function, for which it is the
unperturbed integral that will vanish, i.e., we shall hg(vﬁdSk =0 in the static reference
configuration, so that the corresponding value for the conducting configuration will be
givenby [ fd3% =6 [ f dk.

The antisymmetric case is illustrated by the application with which this work is princi-
pally concerned, namely the current densitygiven by (3.5). Since we havé = 0 in the
reference configuration characterisedpy= 0, we shall have’ = sr! in the conducting
configuration characterised py = 8p;. Thus by substituting’ for f in (3.14) we see that
in the linearised limithe current will be related to thgsseudo momentum displacement
by a relation of the form

nt :]Cijpj’ (3.15)
in which the symmetric tensd€”/ is given as an integral over the Fermi surface by
. 1 iyd
K f Y dse. (3.16)
v

~ 20
F

Before continuing, it is to be remarked that this ten&bt is interpretable as being
proportional to the zero temperature limit of the electric conductivity tea$rdefined
in the usual way by’ = o'/E; where E is the relevant electric field angd the electric
current density, by a relation of the fore/ = 2K/, wherer is the relevant relaxation
time ande the electric charge per patrticle.

In a entirely disordered (liquid or glass like) state the form of the energy funétemd
the consequent location in phase space of the Fermi surface will be difficult to evaluate
theoretically, but there will be the partially compensating simplification that the result will



B. Carter et al. / Nuclear Physics A 748 (2005) 675-697 683

automatically be isotropic. In the mathematically simpler case of a cubic crystalline lattice
that is expected [14] to occur in a neutron star crust, this tekiSowill have the isotropic
form

Kl =Ky, (3.17)
in which the scalar coefficient will evidently be given by
1 .
K= §]/in”. (3.18)

However that may be, it can be seen from (3.16) that the scalar coeffiCierit be given
by a Fermi surface integral of the simple form

1
K=o dSk. 3.19
32n)%h f iy (3.19)
F
In terms of this integral, the relation lw&ten current and momentum will be given by
nl = ]Cyijpj, (3.20)

3.6. The (cut-off dependent) concept of the effective mean mass

In order to relate the formula (3.19) to expressions used elsewhere in the literature, it
is to be noted that we can introduce a mean velocity vegt@nd a conduction neutron
densityn such that the current density can be expressed by

n' =ni'. (3.21)

Subject to the isotropy condition @), the (pseudo) momentum covectgrwill be
expressible in terms of the corresponding covedtet y;; v/ in the simple form

pi = m.;, (3.22)

in which the effective mean particle mass—which we refer to as the “macro mass” in
order to distinguish it from the locally effective “micro masa®—is defined in terms of
the integral (3.19) by the relation

1 = E (3.23)

ny n
It is however to be remarked that whereas the specification of quantities spclaad/C
is physically unambiguous, the specification of the effective maséike that of the mean
transport velocityi’, depends on how many “conduction states” are counted in the defini-
tion of the number density, and how many are left aside as dynamically inert “confined”
states.

In the application to a neutron star crust, the situation is somewhat simpler than is usual
in ordinary solid state physics because thevaht single particle Hamiltonian (2.1) will
usually involve an effective potential functidn that tends rapidly [15] towards an almost
exactly uniform value outside the ionic nuclei to which all the protons and some of the
neutrons are effectively confined. It should be noticed that the single particle wave func-
tion of bound states will be vanishingly small at the W-S cell boundary and therefore those
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states will not be sensitive to the Bloch phase shift. The resulting single particle energies
will thus be nearly independent of the Bloch momentum which means that the associated
group velocities will be very small. The single particle energy spectrum can therefore be
decomposed into a subset consisting of such confined states, and a remainder that will real-
istically be describable as “conduction” states. The separation between those two different
subsets is not entirely sharp (borderline states are commonly refered to as valence states in
ordinary solid state physics) and one has to rely on a more or less arbitrary convention.

In most layers of a neutron star crust, the most convenient possibility is usually to take
the uniform value o outside nuclei, which can be taken as the energy origin, to specify
a corresponding energy ran§e- 0 characterising “conduction” states. This specification
may however be ambiguous in the bottom layers of the inner crust where nuclei are very
close to each other. In order to deal with such cases, we shall adopt the convention, which
agrees with the previous one when nuclei are very far apart, that conduction states are
defined as states whose energy is larger than the maximum value of the potential.

Itis to be remarked that in the uniform limit whereby the periodic background potential
V and the local effective mass® are simply constants, the resulting Fermi surface is a
sphere and the evaluation of the mobility scalar is straightforward. In this case, the associ-
ated macro mass is just equal to the micro mags= m® provided all neutron states are
counted as conduction states.

4. Quantitative estimates of the mobility tensor
4.1. Bottom layer of the inner crust

We shall focus for simplicity on the bottom of the inner crust near saturation density of
the order of 18* g/cm?® where the transition to homogeneous fluid neutron matter takes
place, to evaluate the mobility scalar and the effective mass. In this region the crystal lattice
is not expected to substantially alter the transport properties such as the mobility tensor.
The aim of the following sections is not to provide astrophysically important information
but rather to give some insight that may be valuable in the more general cases that will be
dealt with in future work. Near the base of the crust, the nuclei are so strongly deformed
by their neighbours that they may adopt non-spherical shapes [16], sometimes idealised
by 1D or 2D configurations such as slabs and rods, respectively, which greatly simplifies
the analysis. These “exotic” crust phases are illustrated on Fig. 2 taken from the work of
Oyamatsu [4].

In views of the exploratory character of the present work, we shall use a simple model
for the single particle equation. In particular, we shall drop the condition of strict self-
consistency, and shall use a mean field model based on the work of Oyamatsu [2,4]. He
calculated the structure of the ground state of the inner neutron star crust using a phe-
nomenological energy-density functional, fitted on the first hand to the smoothed nuclear
masses and charged radii of laboratory nuclei orptiséability line and on the other hand
adjusted on the equation of state of pure neutron matter from the variational calculations
of Friedman and Pandharipande [5] using two body as well as three body nucleon—nucleon
interactions. He further investigated with Yamada the importance of shell effects with a
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spaghetti lasagna

Fig. 2. Nuclear configurations for hagonal spaghetti (rod) and lasagna Ig}lettices. Black—nuclear matter;
grey—neutron gas. From [4], with kind permission of the author.

single particle Schrddinger equation in the W=S approximation [2] (the reader is refered to
those two papers for the details).

Unlike the calculations carried out by these authors, we shall apply the 1D or 2D Bloch
type boundary conditions and we shall notkmany approximations about the shape of
the W=S cells which partition the crystal. The 3D configurations require specific numerical
techniques and will be discussed in a separate work [6]. For consistency, the lattice para-
meters (whose values are found in [4]) will be defined so that the volume of the exact W—-S
cell is equal to the volume of the approximate cell. Within a W=S cell, we approximate the
single particle potential’ by the potential/ of Oyamatsu and Yamada [2]. A zeroth order
approximation/p of the potential is obtained by differentiation of the potential part of an
energy density functional{nn, np} so that

Up= 2 (4.2)

onn

Specifically we shall use the parameter set ofdel | of this paper. Then, the effect of the
finite range of the nucleon—nucleon interantie taken into account by using the folding
of the potentiallUp with a Gaussian smearing function of width This potential is sup-
plemented with a spin—orbit coupling term, which is parametrized as a functional of the
density gradients. The Gaussian width and the parameters of the spin—orbit potential are
adjusted so as to reproduce the correct sequence of single particle energy |&J&Rbof
The potentialU thus obtained varies only near the tear surface. Therefore, close to the
W-S cell boundary/ is constant. This enables us to express the periodic pot&héeting
on a neutron moving in an infinite lattice of nuclei as

vin=>Y U{r-T} (4.2)
T

where the sum goes over all nuclei occupying the lattice sites, i.e.£Te,, where¢?

are integers. The potenti#l{r} thus possesses all the symmetries of the crystal lattice. We
neglect small changes i due to passing from a single W-S cell to an infinite lattice. The
energy origin is taken as the value of the potentiabutside nuclei. Following Oyamatsu
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and Yamada [2] we do not include momentum dependent terms in the single particle po-
tential. Consequently the microscopic effective neutron mass in this model is just equal to
the bare neutron mags® = m. We have ignored the spin—orbit coupling since it is found

to be about one order of magnitude smaller than the central potential [2].

The single-particle Schrodinger equation is solved here by the Rayleigh—Ritz varia-
tional approach whereby the expectation value of the Hamiltonian is minimized subject to
a normalization condition. The single particle wave function is expanded into plane waves
defined by

1 .
ol = —== Y (K} CHOT 4.3
vaeII XK: ( )
with the normalization
3 e = 1. (4.4)
K

This expansion into plane waves is actually exact, it merely makes more apparent the
periodicity. The approximation lies in the fact that the summation needs to be truncated
for practical calculations at some cut off ene@yioft (Which thus makes this method
adequate only for slowly varying potentials as in the present case), i.e., so as to include all
reciprocal lattice vectors satisfying

72k 4 K)?
2m

The group velocity is found according tbe Hellmann—Feynman theorem [17] to be
equal to

< Eeutoff- (4'5)

hk K
V= " " |<Pk(K)
K
This last equation shows that deviations from the homogeneous case arise from the spread-
ing of the Bloch wave packet (4.3).
For each total neutron density;, the Fermi energy is determined as an integral over
the first B-Z by

2
np= (zn)32a:/d3kz9{u—5a}, 4.7)
BZ

where we have introduced the Heaviside unit step distribution definédilgy= 1 if x > 0

and zero otherwise (the factor of 2 is to account for the spin degeneracy). The conduction
neutron density is defined by the occupied single particle states whose energy is positive,
i.e.,& > 0, namely

2
"= G Z/d3k Hu — Ea )0 ). (4.8)
“ Bz

2. (4.6)

It will be instructive to compare the Fermi surface area with that of a non-interacting
neutron gas of density,, which is given by

Sgas= 4m (3712nn)2/3. (4.9)
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4.2. “Lasagna” phase

In this model, the slab shaped nuclei or “lasagna” are parallel to each other and equally
spaced by a distanee Hence the single particle potentialis periodic along one direction
only, say thez axis, and takes a constant value in the other two dimensions. The neutron
band structure with a square well potential (whose analytic solution was found a long
time ago by Kronig and Penney [18,19]) was the only case discussed by Oyamatsu and
Yamada [2].

The single particle wavefunction can be factored in the form

o} = g (z}e!F i), (4.10)

in which the reduced wave functiaf, is the solution of a one-dimensional equation of
the form

—h? dz(f)kz

om 42 V{z}or {2} = el {2, (4.11)
satisfying the boundary conditions

iz +a} = ey (). (4.12)

The first B—Z is defined by the set of Bloch wave vectors such-thate <k, < 7 /a.
The B-Z in this peculiar case has an infinite extent as a result of the continuous translational
invariance along planes parallel to the “lgea”. The single particle energy is thus given
by an expression of the form
n2(k2 + k)

2m

whereqa is a band index. It follows that the neutron group velocity components parallel to
the slabs coincide with the group velocity of a non-interacting neutron gas while only the
component perpendicular to the slabs is affected. It can be shown from group theoretical ar-
guments, that this component of the group e@lpmust vanish at the Brillouin zone edge
[20],i.e., atk, = =7 /a. More generally whenever thdd&h wave vector lies on a symme-
try plane, the group velocity component normal to the plane vanishes. It can also be shown
that the energy bands do not cross [20] (ndweess bands may touch “accidentally” for
some specific choice of potential, for instance, a constant one).

The total neutron density is given by

ga{k} = +8a{kz}a (413)

w/a

nnZ#Z/dkz(ﬂ_ga)ﬂ{ﬂ_ga}- (4.14)
“ 0

The mobility along the “lasagna” planes coincides with that of the uniform neutron gas

with the same total neutron density:
Kl — joxx — oy = ' (4.15)

m

The mobility in directions perpendicular to the “lasagna” may however differ from that
of the non-interacting neutron gas:
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b=z = 47.[3h2/(v) dS(a)_ 2h42/<d5a) 9 — s} dk,.
(4.16)

Since the “lasagna” configuration is strongly anisotropic, it is more appropriate to define
a transverse effective macro mass by

n
mt = o (4.17)
The conduction neutron density is expressible as
w/a
4 2me
n:nn+W2‘1:/n hzaﬁ{u—sa}ﬁ{—aa}dkz. (4.18)
0

4.3. “Spaghetti” phase

In the spaghetti model, the crystal is cpased of cylinder shaped nuclei arranged on
a two-dimensional lattice (the nuclear “spaghetti” are assumed to be parallel to each other
along say the axis). Since the single particle potential around one isolated nucleus only
depends on the distance to the rod like nucléus corresponding contribution to the crys-
tal potential does not depend gmence the wave function can be factored as

Olr} = i, ik, (1, y)e'he. (4.19)

The two-dimensional wave function obeys a Schrédinger equation of the form

h? (3% 92
2 ( 2 _2)¢kx,ky{xa y}+V{xa y}d)kx,ky{x’ y}zs{kX9ky}¢kx,ky{xa y}
m \ 0x ay
(4.20)

The energy is thus decomposible as
2,2

X vy 2m

The total neutron density is given by

/,/Zm(u—aa Y — eq ) dky dky, (4.22)

Eafkl =

(4.21)

nn =

(27'[)3h

in which the factor of two arises from the restriction that- 0 and where the integration
is carried out over the 2D first B—Z illustrated on Fig. 4.

It is readily verified that the mobility tens@momponent along the cylindrical nuclei is
merely equal to the mality component of te non-interacting neutron gas:

Kl =gz =1, (4.23)
m
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Fig. 3. Sketch of energy against wave number for crossing and “kissing” scenarios.

The other components perpendicular to thedghetti” depend on the neutron—crystal in-
teraction. It is convenient to defined a mean transverse mobility by

m 2 dk, dk, &y 2 &y 2
KL:\E<2n>3h32a:/\/u——;a((@> +(%> )ﬁ{“_g“}’ @29
Bz

since it involves the integral of a completely symmetric function that can thus be factored
into one irreducible domain of the first B—Z [21].

The Fermi surface area, the mobility tensor and the density involve integrations over the
two-dimensional first B—Z of functions weighted by a Fermi distribution. We have followed
an idea due to Gilat and Raubenheimer for three-dimensional crystals [22], and translated it
into the two-dimensional case. First of all the zone is decomposed into small identical cells
within which the single particle energy is linearly extrapolated from the value of the energy
and its gradient at the center of the cell. Tnéegration is then performed analytically
inside the cell. The integral is approximetey summing the contribution from each cell
(properly weighted whenever the cells ovittfie zone). Unlike the case of band crossing,
extrapolation fails for band “kissing” where the energy gradient varies rapidly in the cell
(see the schematic pictures on Fig. 3).sTpioblem becomes more and more acute as the
number of bands to be included in the integration is increased. However, those induced
systematic errors will tend to vanish as the number of microcells is increased. Whereas the
integrand could be integrated analyticallpide each microcell, we found that it is better
to take it as constant. The reason again lies in the band “kissing” problem. The integrand
typically depends on the momentum via the single particle energy which is extrapolated.
Near a band kissing region, the extrapolation errors in the integrand are integrated which
lead to unstable results.

We have considered two lattice types: squamd hexagonal crystals (whose reciprocal
lattices are also square and hexagonal, respectively). The point r¢tne set of point
symmetries which send the lattice into itself) of the hexagonal latti€g,igSchonflies no-
tation [23]) whose order is equal {®| = 12, thereby reducing integrations of completely
symmetric functions over the entire two-dimensional first B—Z td2th of the zone. We
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Fig. 4. First Brillouin zones and irdeicible domains for square and hexadoraiants of spaghetti (rod) lattice.

mention that for this structure the lattice spacindshortest distance between any two
lattice points) is not equal to the value given by Oyamaisubut is given by

2
—d .
Nl

Likewise, the first B-Z of a square lattice whose point grougjs (lattice spacingt =

aopy) can be partitionned into 8 irdeicible domains. These considerations are illustrated
in Fig. 4 with the conventional labelling. The most adequate cell for integrations is thus a
rectangle since the irreducible B—Zs are raegtalar triangles. The partition of this domain
into microcells is thereby straightforward.

These two groups;s, andCy,, contains two-dimensional irreducible representations
[23] which means that unlike the 1D case, energy bands may cross each other [20]. The
neutron band structure along high symmetry lines is shown on Figs. 5 and 6 for energies in
the vicinity of the Fermi energy and for the lattice spacig = 27.17 fm.

The conduction neutron density is equal to

n=nn 4 Z/«/—staﬁ{u — £ )0 {—¢4) dk, dky. (4.26)
“ Bz

(4.25)

© 2n)3h
The transverse effective mass is defined by
n

The convergence of the integration eafie based on a decomposition into rectangu-
lar cells is illustrated on Fig. 7 for the hexagonal lattice with the lattice spaciyg=
27.17 fm. The convergence is much faster for the density than for the other quantities due
to the absence of the singular square root integrand.
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Fig. 5. Neutron band structure around the Fermi engrgglong directions shown on Fig. 4 for square variant of
spaghetti (rod) latticedoy = 27.17 fm).
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Fig. 6. Neutron band structure around the Fermi engrgglong directions shown on Fig. 4 for hexagonal variant
of spaghetti (rod) lattice witagy = 27.17 fm.

5. Discussion

The results concerning the macroscopic effective neutron mass are illustrated on Fig. 8
and numerical values can be found in Appendix A. The macroscopic effective neutron mass
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Fig. 7. Convergence of computed effective mmés/m as a function of cell number for an hexagonal lattice with
aoy = 27.17 fm.
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Fig. 8. Effective mass of conduction neutroné /m as a function of lattice spacingy) below and above phase
transition from lasagna (slab) regime to spaghetti (rod) regime.

appears to be increased compared to theargt neutron mass. The figure also shows that
this renormalisation of the neutron mass is mostly significant at low densities and becomes
negligible at higher densities where nuclei nearly merge into a uniform mixture. The de-
viations of the effective neutron mass from the bare one can be understood in terms of
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Fig. 9. Example of energy contours intended Brillouin zone for squarettae. For sufficiently small Fermi
energies the contours are approximately circular asdrirge particle case, while at higher energies, the contours
consist of disconnected pieces.
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Fig. 10. Fermi surface area for neutrafs/ Sgas as a function of lattice spacingy) below and above phase
transition from lasagna (slab) regime to spaghetti (rod) regime.

modifications of the Fermi surface from a sphere. In particular, as a result of the opening
of band gaps the Fermi surface is not smooth but contains many holes as schematically
illustrated on Fig. 9. Since the enclosed Fermi volume only depends on the density, this
means that the Fermi surface area for a gidensity is reduced as compared to the cor-
responding sphere as shown on Fig. 10 (see Appendix A for the numerical values). In the
case for which the Fermi volume is equal to the volume of the first Brillouin zone, the
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Fermi sphere can be distorted and torn such that the resulting surface area simply vanishes
while the volume remains finite. Such a situation occurs in ordinary electric insulators.

In the present work we have neglected the spin—orbit coupling which is a small per-
turbation in the density region we considered. Taking into account such term would raise
some degeneracies. The most dramatic change concerns some regions in momentum space
around which unperturbed bands are crossing. The breaking of the spin symmetry will en-
tail that such configuration may be turned into band “kissing” (see Fig. 3) which means that
the group velocity will be strongly reduced around those momenta. This means that the re-
sulting mobility would be lower than the one Wave found. Besides, since the conduction
neutron density is rather unsensitive telichange, it would not be much affected and
therefore the effective neutron mass woukddlightly larger than the one calculated here.

6. Conclusion

The scattering of dripped neutrons by the nuclei in the inner crust leads on a macro-
scopic scale to a modification of the neutron masswhich can be expressed via a well
defined mobility scalall by m, = n/K in which n is the (arbitrary) density of such un-
bound neutrons, and is found to be expressible as an integral of the group veladity
over the corresponding Fermi surface. This effective macro mass should not be confused
with the effective micro mass, relevant for subnuclear scales, which is usually found to be
smaller than the ordinary neutron mass.

Bragg scattering of dripped neutrons is taken into account here by applying Bloch type
boundary conditions, which are well known &olid state physics but have been barely
used in this nuclear context. We have computed numerical values of this mobility scalar in
the bottom layers of the inner crust near thest-core interface, for simple models in the
“pasta” layers: equally spaced slab shapedeiftiasagna”) and rod like nuclei on either
a square or an hexagonal 2D lattice (“spaghetiife (anisotropic) entrainment effect is
small at such densities since the system is nearly homogeneous. It appears that the mobility
scalar tends to be systematically reduced compared to the homogeneous expression and the
farther from homogeneity, the smaller is the mobility scalar. The resulting effective mass
m, is found to be larger than the bare neutron mass. This results can be interpreted as
a macroscopic manifestation of the modifioas in the shape of the Fermi surface area.
Notably as one goes from the homogeneous outer core to the crust, the spherical neutron
Fermi surface gets distorted and even torn and pierced.

The main reason is that the neutron Bragg scattering by crustal nuclei leads to the open-
ing of energy band gaps. A specific feature of those exotic phases is that the mobility scalar
is boundedC > 2n/3m for the “lasagna” phase arkd > nn/3m for the “spaghetti” phase
due to the fact that the neutrons are still free to move in one or two dimensions, respec-
tively. There is no such bound for three-dimensional crystals, for which smaller mobility
scalars (larger effective masses) may be expected.

From these considerations, we can infer that the mobility séalaiill increase with
the density, starting from zero in the outer crust below the neutron drip threshold where
all neutrons are confined, sinee= 0 for all states, to its largest possible value in the ho-
mogeneous neutron star mantle. At low déaes near neutron drip, where the conduction
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neutron density is negligible compared to the total neutron densitg,n,, the crystal
potential vV is quite large but the fraction of the cell occupied by the nuclei is small so
that dripped neutrons propagate essentially freely. Consequently we may expect to get
K ~n/m andm, ~ m (on the understanding that, as discussed in Section 3.6, a conduc-
tion state is defined so as to have an associated group velocity that differs significantly
from zero). On the other hand, at very high densities where nuclei nearly merge, the poten-
tial is much weaker and smoothly varying and we shall haven,, so we expect to find
m, >~m.

In other words the mean effective massis expected to be close to the ordinary mass
m at the top (above neutron drip density where neutrons start to leak out of nuclei) and
bottom (where nuclei merge into a uniform mixture of neutrons, protons and electrons at
density about 13 or 2/3 the nuclear saturation densitys~ 0.16 fm2 [24]) of the inner
crust, but may reach a much larger value (with astrophysically interesting consequences)
in the intermediate layers. This indicates that the unbound neutron band effects (that are
effectively neglected in the commonly used W-S approximation) could have important
consequences as concerns the equilibrium neutron star crust structure and composition.

The exploratory character of the present work, justifies the simplicity of single particle
model we used. In a more realistic, Hartree—Fock calculation, the single particle potential
and effective neutron mass should have to be determined self-consistently. The potential
may contain momentum dependent terms, as with effective nucleon—nucleon interactions
of the Skyrme type, which leads to space varying effective neutron massg$ which
are typically smaller than the bare neutron mass. However, the general arguments we de-
veloped, relying on the shape of the Fermi surface, suggest that the qualitative results of
our calculations, namely the enhancemneithe macroscopic effective mass. will re-
main valid in more elaborate single particle schemes. Finally, let us mention that as we
have shown in a recent paper [9], the neutron pairing is not expected to qualitatively alter
our present conclusions.
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Appendix A. Numerical results

A.l1. Slab shaped nuclei

nn (M=) p(MeV)  aoy(fm)  n/nn Kl/kt mli/m  Se/Sgas

0.0735 31.70 23.71 0.9634  1.0698 1.0307  0.9878
0.0749 32.10 23.07 0.9646  1.0664 1.0286  0.9885
0.0773 32.79 22.23 0.9666  1.0605 1.0251  0.9896

0.0792 33.36 21.84 0.9687 1.0526 1.0196 0.9910
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A.2. Rod like nuclei

A.2.1. Hexagonal lattice

(= uMeV)  aoy(fm)  n/mn  KIKE  mi/m S¢/Sgas

0.0581 27.2461 27.17 0.9553 1.4102 1.3471 0.8898
0.0630 28.7422 25.77 0.9578 1.2972 1.2425 0.9145
0.0678 30.1836 24.62 0.9606 1.2225 1.1744 0.9322
0.0716 31.2812 23.97 0.9632 1.1668 1.1239 0.9471

A.2.2. Square lattice

no(m3)  uMeV) aoy(fm) n/mn  KIKE mi/m Se/Sgas
0.0581 27.2461 27.17 0.9553 1.4673 1.4016 0.8778
0.0630 28.7422 25.77 0.9578 1.3231 1.2673 0.9085
0.0678 30.1797 24.62 0.9606 1.2124 1.1647 0.9347
0.0716 31.2812 23.97 0.9632 1.1473 1.1051 0.9524
References

[1] B. Carter, N. Chamel, P. Haensel, Entrainmentfiicient and effective mass for conduction neutrons in
neutron star crust: [l macrospic treatment, astro-ph/0408083.
[2] K. Oyamatsu, Y. Yamada, Shell energies of non-sigla¢ nuclei in the inner crust of a neutron star, Nucl.
Phys. A 578 (1994) 184-203.
[3] J.W. Negele, D. Vautherin, Neutron star ttea at subnuclear densities, Nucl. Phys. A 207 (1973) 298-320.
[4] K. Oyamatsu, Nuclear shapes in the inner crust of a neutron stars, Nucl. Phys. A 561 (1993) 431-452.
[5] B. Friedman, V.R. Pandharipande, Hot and caidclear and neutron matter, Nucl. Phys. A 361 (1981)
502-520.
[6] N. Chamel, Band structure effects for dripped mens in neutron star crust, nucl-th/0405003, Nucl. Phys.
A, in press.
[7] A. Bulgac, P. Magierski, P.H. Heenen, Neutron stars and the fermionic Casimir effect, Int. J. Mod. Phys.
A 17 (2002) 1054-1059, nucl-th/0112002.
[8] P. Magierski, P.H. Heenen, Structure of the inner crust of neutron stars: crystal lattice or disorded phase?,
Phys. Rev. C 65 (2002) 045804, nucl-th/0112018.
[9] B. Carter, N. Chamel, P. Haensel, Effect of BCS pajron entrainment in nexgn superfluid current in
neutron star crust, astro-ph/0406228.
[10] F. Douchin, P. Haensel, Inner edge of neutron-stast with SLy effective nucleon—nucleon interactions,
Phys. Lett. B 485 (2000) 107-114, astro-ph/0006135.
[11] N.W. Ashcroft, N.D. Mermin, Solid State Phigs, Holt—-Saunders International Editions, 1981.
[12] E.P. Wigner, F. Seitz, On the constitution of metallic sodium, Phys. Rev. 43 (1933) 804-810;
E.P. Wigner, F. Seitz, Phys. Rev. 46 (1934) 509-524.
[13] R.D. Cowan, The Theory of Atomic Structure angeStra, University of California, Berkeley, 1981, p. 107.
[14] M.A. Ruderman, Crystallization and torsidrascillations of superdense stars, Nature 218 (1968) 1128—
1129.
[15] F. Douchin, P. Haensel, J. Meyer, Nuclear surfack@nvature properties for SLy Skyrme forces and nuclei
in the inner neutron-star crust, Nucl. Phys. A 665 (2000) 419.
[16] C.J. Pethick, D.G. Ravenhall, Matter at large mentexcess and the physics of neutron star crusts, Annu.
Rev. Part. Sci. 45 (1995) 429-484.
[17] R. Feynman, Forces in molecules, Phys. Rev. 56 (1939) 340-343.



B. Carter et al. / Nuclear Physics A 748 (2005) 675-697 697

[18] R.L. de Kronig, W.G. Penney, Quantum mechanit&lectrons in crystal lattices, Proc. R. Soc. London,
Ser. A 130 (1931).

[19] N.O. Folland, Energy bands and forbidden gapthe Kronig—Penney model, Phys. Rev. B 28 (1983) 6068—
6070.

[20] S.L. Altmann, Band Theory of Solids: An Introduction from the Point of View of Symmetry, Clarendon,
Oxford, 1991.

[21] D.F. Johnston, Group theory in solid state physics, Rep. Prog. Phys. 23 (1960) 66-153.

[22] G. Gilat, L.J. Raubenheimer, Acurate nhumerical method for calculating frequency distribution functions in
solids, Phys. Rev. 144 (1966) 390-395.

[23] M. Hamermesh, Group Theory and Its Application to Physical Problems, Dover, New York, 1989.

[24] P. Haensel, Neutron star crusts, in: D. Blaschké&.Elendenning, A. Sdrakian (Eds.), Physics of Neutron
Star Interiors, Lecture Notes in Physjwol. 578, Springer, Heidelberg, 2001, p. 127.



