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Abstract

In the inner crust of a neutron star, at densities above the “drip” threshold, unbound“conduction”
neutrons can move freely past through the ionic lattice formed by the nuclei. The relative curr
densityni = nv̄i of such conduction neutrons will be related to the corresponding mean pa
momentumpi by a proportionality relation of the formni = Kpi in terms of a physically wel
defined mobility coefficientK whose value in this context has not been calculated before. U
methods from ordinary solid state and nuclear physics, a simple quantum mechanical treatme
on the independent particle approximation, is used here to formulateK as the phase space integ
of the relevant group velocity over the neutron Fermi surface. The result can be described
“entrainment” that changes the ordinary neutron massm to a macroscopic effective mass per neut
that will be given—subject to adoption of a convention specifying the precise number densityn of the
neutrons that are considered to be “free”—bym� = n/K. The numerical evaluation of the mobilit
coefficient is carried out for nuclear configurations of the “lasagna” and “spaghetti” type tha
be relevant at the base of the crust. Extrapolation to the middle layers of the inner crust lead
unexpected prediction thatm� will become very large compared withm.
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1. Introduction

The main purpose of this article is to show how a mean field treatment of ne
star crust matter can be used to address the previously unsolved problem of eva
a quantity, namely the relevant neutron mobility coefficientK, that is essential for the a
trophysical applications that will be described in a separate article [1]. In terms o
relevant number densityn of effectively unbound neutrons, this coefficient determi
a corresponding effective massm� = n/K that characterises their average motion on
macroscopic scale (meaning one that is large compared with the spacing between
and that we therefore refer to as the macro mass, to distinguish it from the micro
effective mass,m⊕ say, characterising the dynamics of the neutrons on subnuclear s
Whereasm⊕ is well known to be typically rather smaller than the ordinary neutron masm,
we reach the previously unexpected conclusionthat there is likely to be a strong “entrai
ment” effect whereby the macro massm� will typically become large, and in some laye
extremely large, compared withm.

A secondary purpose of this article is to draw the attention of nuclear theorists
potentialities of the almost entirely unexploredbranch of theoretical astrophysical nucle
physics that needs to be developed for this and many other purposes. The only r
work of which we are aware so far is thatof Oyamatsu and Yamada [2], who appe
to be the only ones to have taken proper account of the neutron scattering by the
inside the inner crust by the use of appropriate Bloch type periodicity conditions of th
kind commonly employed for the treatment of electrons in ordinary terrestrial solid
physics. Their treatment however was restricted to a simple one-dimensional mode

Under the conditions of ordinary terrestrial solid state physics, and even at the
higher densities characterising the matter in a white dwarf star, long range electric
keep the nuclei so far apart that, in so far as the much stronger but short range n
interactions are concerned, each individualnucleus can be treated separately as if it w
isolated. Until quite recently [2], such a separate treatment ofindividual nuclei (considere
as if isolated each in its own cell—with Wigner–Seitz type boundary conditions) has b
used in nearly all quantum mechanical calculations on neutron star crust matter since
pioneer work of Negele and Vautherin [3]. That kind of approximation is fully justifia
in the outer crust, where the densities are not too much greater than those found in
dwarf. However, such a treatment can no longer be considered entirely satisfactory
inner crust, meaning the part with density above the “neutron drip” threshold at
1011 g/cm3, where there are unconfined neutrons that travel between neighbouring n
which thereby cease to be effectively isolated from one another.

While desirable for accuracy throughout the inner crust, a proper collective rather tha
individual treatment of the nuclei becomes not just desirable but absolutely essen
treating the problem with which Oyamatsu and Yamada [2,4] were concerned, name
of the nuclear matter inside neutron star crust. Such a treatment is also essential for
the problem with which the present work is concerned, namely that of stationary bu
static configurations in which a neutron current flows relative to the lattice formed b

nuclei, something that obviously cannot be discussed in the usual approach that treats the
nuclei as if they were isolated in individual (e.g., Wigner Seitz type) boxes.
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The flow of neutrons is treated here as a perturbation of a zero temperature groun
characterised just by the location of the relevant Fermi surface in momentum space.
thereby obtain provisional rough estimates ofthe relevant mobility coefficient which sug
gest that (unlike what occurs in the fluid core and on a microscopic scale) the macro
m� that effectively characterises the neutron motion on a macroscopic scale can becom
very large compared with the ordinary neutron massm, particularly in the middle part o
the conducting layer, for which three-dimensional numerical results will be presen
a follow up article [6]. The present article deals more specifically with simplified rod
plate type models that are relevant near the crust core interface, where the mass enhan
ment will be less extreme.

Bulgac, Magierski and Heenen have recently pointed out the importance of sh
fects induced by unbound neutrons in neutron star crust by evaluating the Casimir
for neutron matter in the presence of inhomogeneities from a semiclassical approach a
more recently by performing a Skyrme Hartree–Fock calculation with ordinary period
boundary conditions (see [7,8] and referencestherein). However, this kind of bounda
conditions does not properly account for Bragg scattering of dripped neutrons and is on
a particular case of the more general Bloch type boundary conditions.

In the absence of any previous quantum mechanical calculation whereby nucle
crystal lattice are treated collectively (apart from the 1D calculation previously mentionn
[2]), even at the simplest level of approximation, we shall adopt the simple model sugg
by Oyamatsu and Yamada, supplemented with Bloch type boundary conditions, in
to estimate the effective neutron massm�. This model treats the neutrons as independ
fermions subject to an effective background potential. We wish to draw the attent
nuclear theorists to the problem of including Bloch boundary conditions in more sophis
cated approximation schemes as a challenge for future work.

In the mean time, experience with the analogous problem of electron transport
dinary solid state physics suggests that the results obtained from the Oyamatsu–Y
type treatment used here should not be too bad as a first approximation. Further enc
ment comes from our own recent attempt to take up the challenge of allowing for cou
by an appropriate adaptation of the standard BCS pairing theory on which the p
tion of neutron superfluidity (in the relevant low to moderate temperature range) is b
the upshot [9] is that (although it is essential for the inhibition of resistivity) as far as the
“entrainment” phenomenon is concerned the effect of the ensuing “gap” will not be
large nor very difficult to calculate.

2. Microscopic description of conduction neutrons in the inner crust

2.1. Single-particle Schrödinger equation

The basic principle of the conductivity model we wish to adapt from ordinary solid
theory to the context of a neutron star crust is that the “conduction band”, and perha
some of the highest “confined” levels, can be analysed within the independent parti

proximation, in terms of energy eigenstates for a single particle described by a Bloch type
wave functionϕ, satisfying the Bloch periodic boundary conditions as discussed below.
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In the rest frame of the crust, with respect to which the system will be assumed to
stationary equilibrium, the single particle wave function will be taken to be governed
Hamiltonian operatorH that is given by

H = −h̄2∇i
γ ij

2m⊕ ∇j + V, (2.1)

whereγ ij is just the space metric, whileV is the single particle potential, andm⊕ is the
relevant local effective mass parameter.

The potentialV and the effective massm⊕ will be periodic in the case of a regular cry
talline solid lattice, though not for a fluid configuration such as will be relevant at hi
temperatures. The value of the effective potentialV (and the associated deviation of t
effective massm⊕ from m) is supposed to allow not just for the attraction of the confi
protons in the nuclei but also for the mean effect of the other fermions, which are ele
in the familiar solid state applications, but neutrons in the context under consideration he

2.2. Boundary conditions

The preceding considerations apply even to disordered (glass like or liquid) configu
rations, but in order to proceed we shall now restrict our attention to cases for whi
nuclei are assumed to be fixed and locally distributed in a regular crystal lattice confi
tion, in which an elementary cell consists of a parallelopiped of volumeVcell say spanned
by a triad of basis vectors ea labelled by an index with valuesa = 1,2,3, so that the system
is invariant with respect to translations generated by vectors of the form

T = �aea (2.2)

for integer values of the coefficients�a (in the following summation over repeated indic
is assumed). This so-called adiabatic or Born–Oppenheimer approximation is justified
the large difference between the neutron and nucleus masses, since typically each
contains several hundred nucleons [10].

It follows directly from the well-known Floquet–Bloch theorem [11] that the sin
particle wave function has to satisfy the following boundary conditions

ϕk{r + T} = eik·Tϕk{r}, (2.3)

where k is the Bloch momentum covector.
It will therefore suffice to solve the Schrödinger equation just inside a single eleme

cell. Instead of using a primitive cell of parallelopiped, it is convenient for many purp
to work instead with the Wigner–Seitz (W–S) cell defined as the set of points tha
closer to a given lattice node than to any other. Such a cell exhibits the full symmetry o
the lattice. Its shape is determined by the crystal structure, a polyhedron in gene
instance, a cube in a simple cubic lattice. This exactly defined W–S cell should n
confused with the widely employed eponymous “W–S approximation” [12] which con
in replacing this cell by a sphere (or more generally any convenient cell that simplifies th
analysis).
The Bloch momentum k takes values inside the first Brillouin zone (B–Z), which is the
W–S cell of the reciprocal lattice whose nodes are located at K= �a la for integer values
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of the coefficients�a where the dual basis vectors la are defined by the following scala
products

la · eb = 2πδa
b, (2.4)

the 2π normalization factor being introduced for convenience.
It must be emphasized that the single particle wave function will have to satisf

relation (2.3) between two opposite faces of the cell. This means in particular that the
Schrödinger equation has to be solved foreachwave vector k inside the first B–Z. Th
ordinary periodic boundary conditions on the cell, which have been recently applie
Magierski and Heenen [8], are thus only a restricted subset of solutions, namely thos
k = 0.

For each momentum k, there exists only a discrete set of energy eigenvalues satisfy
the Bloch boundary conditions. The single particle energy spectrum is therefore a colle
tion of sheets in momentum space, each sheet usually being referred as a band (labelled
the principal quantum number).

3. Microscopic dynamics in mean field of lattice

3.1. From microscopic to macroscopic observables

The linearisation involved in the neglect of direct two body or many body interac
in such a mean field treatment excludes allowance for higher order effects such
pairing responsible for a superfluid energy gap, but as discussed in a separate art
this limitation should not matter too much for the evaluation of the basic equation of
of the fluid, since the main effect of superfluidity is not to modify the equation of mo
but just to restrain the class of the admissible solutions (by allowing only those th
irrotational).

The main limitation on the use of such a linearisation is that it makes sense on
configurations that do not differ too much from the static reference configuration on whi
the estimation of the effective potential energy functionV is based.

3.2. Fermi surface in ground state configuration

The zero temperature configuration is obtained by minimising an energy densU

subject to the constraint of a given value of the neutron densitynn, defined by

nn =
∫

d3k

(2π)3 . (3.1)

The energy density is expressible in terms of the single particle energies (in this wo
shall use braces instead of ordinary brackets for functional dependence, in order to avo
possibly confusion with simple multiplication)
Hϕk = E{k}ϕk (3.2)
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by an expression of the form

U = U{0} +
∫

E{k} d3k

(2π)3 , (3.3)

where, as a standard postulate, the contributionU{0} is ignored in the minimisation pro
cedure. This means that all single particle states of energy up to but not beyond
particular Fermi level,µ say, are occupied. This Fermi energy specifies the “Fermi
face”, namely the locus,SF say, in momentum space, where

E{k} = µ. (3.4)

It must be emphasised that the Fermi surface will in general consist ofdisconnected
pieces unlike the homogenous case in which the Fermi surface is simply a sphere
the property thatE{k} = E{−k}, the ground state is thus completely symmetric in the se
that its total momentum density

∫
d3k ki vanishes. This is a generalized version of Uns

theorem [13] according to which the all electron wave function of a closed shell atom
spherically symmetric.

3.3. Minimal conducting configurations

Our main concern in the present analysis is with current carrying configuration
characterised by some given value of the physically well defined number current d
with componentsni given by

ni =
∫

vi d3k

(2π)3 (3.5)

in which the transport velocityvi is given by the formula

vi = 1

h̄

∂E
∂ki

. (3.6)

The kind of current carrying configurations that will presumably be relevant in the
temperature limit will be those for which the energy densityU is minimised for a given
value of the neutron densitynn subject to the further constraint that the number cur
density also has the prescribed valueni . It is evident that this constrained minimisatio
condition requires that the occupied statesshould consist just of those subject to an
equality of the form

E � µ + piv
i (3.7)

for some fixed covector whose constant componentspi have been introduced as Lagran
multipliers. The phase space volume specified in this way will have a boundary ch
terised by the condition

E = µ + piv
i , (3.8)

which specifies a modified Fermi surface,S say. The constraint of having a finite curre

breaks the symmetry and will thus necessarily lead to a new ground state with a non-
vanishing total momentum density vector

∫
d3k ki �= 0.



t.

l
be

n.
w

ce-

s

B. Carter et al. / Nuclear Physics A 748 (2005) 675–697 681

Fig. 1. Sketch of energy against wave number, showing uniform displacement attributable to curren

3.4. The uniform displacement of the Fermi surface

To justify the use of a Schrödinger type HamiltonianH involving an effective potentia
of the same form as in the zero current case, weneed to assume that (as will presumably
the case in the relevant context of pulsar glitches) the current densityni is small enough to
be treated by linear perturbation theory. This means that the Lagrange multiplierpi should
itself be considered just as a first order perturbation, having zero valuepi = 0 in the static
unperturbed configuration, andpi = δpi in the perturbed current carrying configuratio
For a given (unchanged) value of the chemical potentialµ, the difference between the ne
value (3.8) and the old value (3.4) of the Fermi energy levelE will be given to first order
by δE = δ(piv

i) = viδpi and thus in terms of the perturbed value ofpi simply by

δE = piv
i . (3.9)

This change in energy can be interpreted as being attributable to a phase space displa
mentδki. Since this change will be given, according to (3.6), by

δE = h̄viδki, (3.10)

it can be seen that the simplest possibility is to take the displacement to have theuniform
value given just by

h̄δki = pi (3.11)

as illustrated on Fig. 1.

3.5. Relation between current and momentum

The relation (3.11) means that (in the infinitesimal limit) the Lagrange multiplierpi
can be physically interpreted simply as components of auniformpseudo momentum dis-
placement of the occupied phase space region, and of its “Fermi surface” boundary.
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The effect of this displacement on the Fermi surface element dSi
F as given—in terms o

the corresponding surface measure element, dSF—by

dSi
F = (

vi/v
)
dSF, (3.12)

will be to sweep out an infinitesimal phase space volume element given by

h̄d3k = pi dSi
F. (3.13)

It follows that, for the integral over the occupied region of any phase space functionf , the
difference between the value for the displaced (conducting) configuration and the value
the non-conducting reference configuration will be given (to linear order) by the form

h̄δ

∫
f d3k = pi

∮
F

f dSi
F, (3.14)

in which it is to be understood that the integral on the right is taken over the entire F
surface.

We have already pointed out that the energy functionE will be symmetric with respec
to the origin, hence it followsthat the Fermi surface element dSi

F will be antisymmetric
about the origin so that its unweighted integral

∮
F dSi

F will self cancel to give zero. We
can thus see from (3.14) that for any phase space functionf that is symmetric about th
origin the corresponding integral will be unaffected by the displacement, i.e., we shall
δ
∫

f d3k = 0. This contrasts with the case of an antisymmetric function, for which it is
unperturbed integral that will vanish, i.e., we shall have

∫
f d3k = 0 in the static referenc

configuration, so that the corresponding value for the conducting configuration w
given by

∫
f d3k = δ

∫
f d3k.

The antisymmetric case is illustrated by the application with which this work is pr
pally concerned, namely the current densityni given by (3.5). Since we haveni = 0 in the
reference configuration characterised bypi = 0, we shall haveni = δni in the conducting
configuration characterised bypi = δpi . Thus by substitutingvi for f in (3.14) we see tha
in the linearised limitthe current will be related to thepseudo momentum displacementpi

by a relation of the form

ni =Kij pj , (3.15)

in which the symmetric tensorKij is given as an integral over the Fermi surface by

Kij = 1

(2π)3h̄

∮
F

vivj

v
dSF. (3.16)

Before continuing, it is to be remarked that this tensorKij is interpretable as bein
proportional to the zero temperature limit of the electric conductivity tensorσ ij , defined
in the usual way byj i = σ ij Ej where Ej is the relevant electric field andj i the electric
current density, by a relation of the formσ ij = τe2Kij , whereτ is the relevant relaxatio
time ande the electric charge per particle.

In a entirely disordered (liquid or glass like) state the form of the energy functionE and

the consequent location in phase space of the Fermi surface will be difficult to evaluate
theoretically, but there will be the partially compensating simplification that the result will
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automatically be isotropic. In the mathematically simpler case of a cubic crystalline l
that is expected [14] to occur in a neutron star crust, this tensorKij will have the isotropic
form

Kij =Kγ ij , (3.17)

in which the scalar coefficient will evidently be given by

K = 1

3
γijKij . (3.18)

However that may be, it can be seen from (3.16) that the scalar coefficientK will be given
by a Fermi surface integral of the simple form

K = 1

3(2π)3h̄

∮
F

v dSF. (3.19)

In terms of this integral, the relation between current and momentum will be given b

ni =Kγ ij pj . (3.20)

3.6. The (cut-off dependent) concept of the effective mean mass

In order to relate the formula (3.19) to expressions used elsewhere in the litera
is to be noted that we can introduce a mean velocity vectorv̄i and a conduction neutro
densityn such that the current density can be expressed by

ni = nv̄i . (3.21)

Subject to the isotropy condition (3.17), the (pseudo) momentum covectorpi will be
expressible in terms of the corresponding covectorv̄i = γij v̄

j in the simple form

pi = m�v̄i , (3.22)

in which the effective mean particle massm�—which we refer to as the “macro mass”
order to distinguish it from the locally effective “‘micro mass”m⊕—is defined in terms o
the integral (3.19) by the relation

1

m�

= K
n

. (3.23)

It is however to be remarked that whereas the specification of quantities such aspi andK
is physically unambiguous, the specification of the effective massm�, like that of the mean
transport velocitȳvi , depends on how many “conduction states” are counted in the d
tion of the number densityn, and how many are left aside as dynamically inert “confin
states.

In the application to a neutron star crust, the situation is somewhat simpler than is
in ordinary solid state physics because the relevant single particle Hamiltonian (2.1) w
usually involve an effective potential functionV that tends rapidly [15] towards an almo
exactly uniform value outside the ionic nuclei to which all the protons and some o

neutrons are effectively confined. It should be noticed that the single particle wave func-
tion of bound states will be vanishingly small at the W–S cell boundary and therefore those
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states will not be sensitive to the Bloch phase shift. The resulting single particle en
will thus be nearly independent of the Bloch momentum which means that the asso
group velocities will be very small. The single particle energy spectrum can therefo
decomposed into a subset consisting of such confined states, and a remainder that w
istically be describable as “conduction” states. The separation between those two d
subsets is not entirely sharp (borderline states are commonly refered to as valence s
ordinary solid state physics) and one has to rely on a more or less arbitrary convent

In most layers of a neutron star crust, the most convenient possibility is usually to
the uniform value ofV outside nuclei, which can be taken as the energy origin, to sp
a corresponding energy rangeE > 0 characterising “conduction” states. This specificat
may however be ambiguous in the bottom layers of the inner crust where nuclei ar
close to each other. In order to deal with such cases, we shall adopt the convention
agrees with the previous one when nuclei are very far apart, that conduction sta
defined as states whose energy is larger than the maximum value of the potential.

It is to be remarked that in the uniform limit whereby the periodic background pote
V and the local effective massm⊕ are simply constants, the resulting Fermi surface
sphere and the evaluation of the mobility scalar is straightforward. In this case, the a
ated macro mass is just equal to the micro massm� = m⊕ provided all neutron states a
counted as conduction states.

4. Quantitative estimates of the mobility tensor

4.1. Bottom layer of the inner crust

We shall focus for simplicity on the bottom of the inner crust near saturation dens
the order of 1014 g/cm3 where the transition to homogeneous fluid neutron matter t
place, to evaluate the mobility scalar and the effective mass. In this region the crystal
is not expected to substantially alter the transport properties such as the mobility
The aim of the following sections is not to provide astrophysically important informa
but rather to give some insight that may be valuable in the more general cases that
dealt with in future work. Near the base of the crust, the nuclei are so strongly defo
by their neighbours that they may adopt non-spherical shapes [16], sometimes id
by 1D or 2D configurations such as slabs and rods, respectively, which greatly sim
the analysis. These “exotic” crust phases are illustrated on Fig. 2 taken from the w
Oyamatsu [4].

In views of the exploratory character of the present work, we shall use a simple m
for the single particle equation. In particular, we shall drop the condition of strict
consistency, and shall use a mean field model based on the work of Oyamatsu [2
calculated the structure of the ground state of the inner neutron star crust using
nomenological energy-density functional, fitted on the first hand to the smoothed n
masses and charged radii of laboratory nuclei on theβ stability line and on the other han
adjusted on the equation of state of pure neutron matter from the variational calcu

of Friedman and Pandharipande [5] using two body as well as three body nucleon–nucleon
interactions. He further investigated with Yamada the importance of shell effects with a
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Fig. 2. Nuclear configurations for hexagonal spaghetti (rod) and lasagna (slab) lattices. Black—nuclear matte
grey—neutron gas. From [4], with kind permission of the author.

single particle Schrödinger equation in the W–S approximation [2] (the reader is refe
those two papers for the details).

Unlike the calculations carried out by these authors, we shall apply the 1D or 2D
type boundary conditions and we shall not make any approximations about the shape
the W–S cells which partition the crystal. The 3D configurations require specific num
techniques and will be discussed in a separate work [6]. For consistency, the lattice
meters (whose values are found in [4]) will be defined so that the volume of the exac
cell is equal to the volume of the approximate cell. Within a W–S cell, we approxima
single particle potentialV by the potentialU of Oyamatsu and Yamada [2]. A zeroth ord
approximationU0 of the potential is obtained by differentiation of the potential part o
energy density functionalv{nn, np} so that

U0 = ∂v

∂nn
. (4.1)

Specifically we shall use the parameter set of model I of this paper. Then, the effect of th
finite range of the nucleon–nucleon interaction is taken into account by using the foldin
of the potentialU0 with a Gaussian smearing function of widthκ . This potential is sup
plemented with a spin–orbit coupling term, which is parametrized as a functional o
density gradients. The Gaussian width and the parameters of the spin–orbit poten
adjusted so as to reproduce the correct sequence of single particle energy levels o208Pb.
The potentialU thus obtained varies only near the nuclear surface. Therefore, close to t
W–S cell boundaryU is constant. This enables us to express the periodic potentialV acting
on a neutron moving in an infinite lattice of nuclei as

V {r} =
∑

T

U{r − T}, (4.2)

where the sum goes over all nuclei occupying the lattice sites, i.e., T= �aea , where�a

are integers. The potentialV {r} thus possesses all the symmetries of the crystal lattice

neglect small changes inU due to passing from a single W–S cell to an infinite lattice. The
energy origin is taken as the value of the potentialV outside nuclei. Following Oyamatsu
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and Yamada [2] we do not include momentum dependent terms in the single partic
tential. Consequently the microscopic effective neutron mass in this model is just eq
the bare neutron massm⊕ = m. We have ignored the spin–orbit coupling since it is fou
to be about one order of magnitude smaller than the central potential [2].

The single-particle Schrödinger equation is solved here by the Rayleigh–Ritz
tional approach whereby the expectation value of the Hamiltonian is minimized sub
a normalization condition. The single particle wave function is expanded into plane w
defined by

ϕk{r} = 1√
Vcell

∑
K

ϕ̃k{K}ei(k+K)·r (4.3)

with the normalization∑
K

∣∣ϕ̃k(K)
∣∣2 = 1. (4.4)

This expansion into plane waves is actually exact, it merely makes more appare
periodicity. The approximation lies in the fact that the summation needs to be trun
for practical calculations at some cut off energyEcutoff (which thus makes this metho
adequate only for slowly varying potentials as in the present case), i.e., so as to incl
reciprocal lattice vectors satisfying

h̄2(k + K)2

2m
< Ecutoff. (4.5)

The group velocity is found according to the Hellmann–Feynman theorem [17] to
equal to

v = h̄k

m
+

∑
K

h̄K

m

∣∣ϕ̃k(K)
∣∣2. (4.6)

This last equation shows that deviations from the homogeneous case arise from the
ing of the Bloch wave packet (4.3).

For each total neutron densitynn, the Fermi energyµ is determined as an integral ov
the first B–Z by

nn = 2

(2π)3

∑
α

∫
BZ

d3k ϑ{µ − Eα}, (4.7)

where we have introduced the Heaviside unit step distribution defined byϑ{x} = 1 if x > 0
and zero otherwise (the factor of 2 is to account for the spin degeneracy). The cond
neutron density is defined by the occupied single particle states whose energy is p
i.e.,Eα > 0, namely

n = 2

(2π)3

∑
α

∫
BZ

d3k ϑ{µ − Eα}ϑ{Eα}. (4.8)

It will be instructive to compare the Fermi surface area with that of a non-intera
neutron gas of densitynn, which is given by
Sgas= 4π
(
3π2nn

)2/3
. (4.9)
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4.2. “Lasagna” phase

In this model, the slab shaped nuclei or “lasagna” are parallel to each other and e
spaced by a distancea. Hence the single particle potentialV is periodic along one directio
only, say thez axis, and takes a constant value in the other two dimensions. The ne
band structure with a square well potential (whose analytic solution was found a
time ago by Kronig and Penney [18,19]) was the only case discussed by Oyamat
Yamada [2].

The single particle wavefunction can be factored in the form

ϕk{r} = φkz{z}ei(kxx+kyy), (4.10)

in which the reduced wave functionφkz is the solution of a one-dimensional equation
the form

−h̄2

2m

d2φkz

dz2
+ V {z}φkz{z} = ε{kz}φkz{z}, (4.11)

satisfying the boundary conditions

φkz{z + a} = eikzaφkz{z}. (4.12)

The first B–Z is defined by the set of Bloch wave vectors such that−π/a � kz � π/a.
The B–Z in this peculiar case has an infinite extent as a result of the continuous transl
invariance along planes parallel to the “lasagna”. The single particle energy is thus giv
by an expression of the form

Eα{k} = h̄2(k2
x + k2

y)

2m
+ εα{kz}, (4.13)

whereα is a band index. It follows that the neutron group velocity components paral
the slabs coincide with the group velocity of a non-interacting neutron gas while on
component perpendicular to the slabs is affected. It can be shown from group theoret
guments, that this component of the group velocity must vanish at the Brillouin zone edg
[20], i.e., atkz = ±π/a. More generally whenever the Bloch wave vector lies on a symm
try plane, the group velocity component normal to the plane vanishes. It can also be
that the energy bands do not cross [20] (nevertheless bands may touch “accidentally” f
some specific choice of potential, for instance, a constant one).

The total neutron density is given by

nn = m

π2h̄2

∑
α

π/a∫
0

dkz(µ − εα)ϑ{µ − εα}. (4.14)

The mobility along the “lasagna” planes coincides with that of the uniform neutro
with the same total neutron density:

K‖ = Kxx =Kyy = nn

m
. (4.15)
The mobility in directions perpendicular to the “lasagna” may however differ from that
of the non-interacting neutron gas:



efine

on
h other
only
s-

n

is
688 B. Carter et al. / Nuclear Physics A 748 (2005) 675–697

K⊥ =Kzz = 1

4π3h̄

∑
α

∫
(vz)2

v
dS

(α)
F = m

π2h̄4

∑
α

π/a∫
0

(
dεα

dkz

)2

ϑ{µ − εα}dkz.

(4.16)

Since the “lasagna” configuration is strongly anisotropic, it is more appropriate to d
a transverse effective macro mass by

m⊥
� ≡ n

K⊥ . (4.17)

The conduction neutron density is expressible as

n = nn + 4

(2π)3

∑
α

π/a∫
0

π
2mεα

h̄2 ϑ{µ − εα}ϑ{−εα}dkz. (4.18)

4.3. “Spaghetti” phase

In the spaghetti model, the crystal is composed of cylinder shaped nuclei arranged
a two-dimensional lattice (the nuclear “spaghetti” are assumed to be parallel to eac
along say thez axis). Since the single particle potential around one isolated nucleus
depends on the distance to the rod like nucleus, the corresponding contribution to the cry
tal potential does not depend onz hence the wave function can be factored as

ϕk{r} = φkx,ky {x, y}eikzz. (4.19)

The two-dimensional wave function obeys a Schrödinger equation of the form

− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
φkx,ky {x, y} + V {x, y}φkx,ky {x, y} = ε{kx, ky}φkx,ky {x, y}.

(4.20)

The energy is thus decomposible as

Eα{k} = εα{kx, ky} + h̄2k2
z

2m
. (4.21)

The total neutron density is given by

nn = 4

(2π)3h̄

∑
α

∫
BZ

√
2m(µ − εα)ϑ{µ − εα}dkx dky, (4.22)

in which the factor of two arises from the restriction thatkz > 0 and where the integratio
is carried out over the 2D first B–Z illustrated on Fig. 4.

It is readily verified that the mobility tensorcomponent along the cylindrical nuclei
merely equal to the mobility component of the non-interacting neutron gas:
K‖ = Kzz = nn

m
. (4.23)
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Fig. 3. Sketch of energy against wave number for crossing and “kissing” scenarios.

The other components perpendicular to the “spaghetti” depend on the neutron–crystal
teraction. It is convenient to defined a mean transverse mobility by

K⊥ =
√

m

2

2

(2π)3h̄3

∑
α

∫
BZ

dkx dky√
µ − εα

((
∂εα

∂kx

)2

+
(

∂εα

∂ky

)2)
ϑ{µ − εα}, (4.24)

since it involves the integral of a completely symmetric function that can thus be fac
into one irreducible domain of the first B–Z [21].

The Fermi surface area, the mobility tensor and the density involve integrations ov
two-dimensional first B–Z of functions weighted by a Fermi distribution. We have follo
an idea due to Gilat and Raubenheimer for three-dimensional crystals [22], and trans
into the two-dimensional case. First of all the zone is decomposed into small identica
within which the single particle energy is linearly extrapolated from the value of the en
and its gradient at the center of the cell. The integration is then performed analytica
inside the cell. The integral is approximated by summing the contribution from each c
(properly weighted whenever the cells overfill the zone). Unlike the case of band crossin
extrapolation fails for band “kissing” where the energy gradient varies rapidly in the
(see the schematic pictures on Fig. 3). This problem becomes more and more acute as
number of bands to be included in the integration is increased. However, those in
systematic errors will tend to vanish as the number of microcells is increased. Where
integrand could be integrated analytically inside each microcell, we found that it is bet
to take it as constant. The reason again lies in the band “kissing” problem. The inte
typically depends on the momentum via the single particle energy which is extrapo
Near a band kissing region, the extrapolation errors in the integrand are integrated
lead to unstable results.

We have considered two lattice types: squareand hexagonal crystals (whose recipro
lattices are also square and hexagonal, respectively). The point groupP (the set of point
symmetries which send the lattice into itself) of the hexagonal lattice isC6v (Schönflies no-

tation [23]) whose order is equal to|P | = 12, thereby reducing integrations of completely
symmetric functions over the entire two-dimensional first B–Z to 1/12th of the zone. We
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Fig. 4. First Brillouin zones and irreducible domains for square and hexagonal variants of spaghetti (rod) lattice

mention that for this structure the lattice spacinga (shortest distance between any tw
lattice points) is not equal to the value given by OyamatsuaOy but is given by

a =
√

2√
3
aOy. (4.25)

Likewise, the first B–Z of a square lattice whose point group isC4v (lattice spacinga =
aOy) can be partitionned into 8 irreducible domains. These considerations are illustra
in Fig. 4 with the conventional labelling. The most adequate cell for integrations is t
rectangle since the irreducible B–Zs are rectangular triangles. The partition of this doma
into microcells is thereby straightforward.

These two groups,C6v andC4v , contains two-dimensional irreducible representati
[23] which means that unlike the 1D case, energy bands may cross each other [2
neutron band structure along high symmetry lines is shown on Figs. 5 and 6 for ener
the vicinity of the Fermi energy and for the lattice spacingaOy = 27.17 fm.

The conduction neutron density is equal to

n = nn − 4

(2π)3h̄

∑
α

∫
BZ

√−2mεαϑ{µ − εα}ϑ{−εα}dkx dky. (4.26)

The transverse effective mass is defined by

m⊥
� ≡ n

K⊥ . (4.27)

The convergence of the integration scheme based on a decomposition into rectan
lar cells is illustrated on Fig. 7 for the hexagonal lattice with the lattice spacingaOy =

27.17 fm. The convergence is much faster for the density than for the other quantities due
to the absence of the singular square root integrand.
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Fig. 5. Neutron band structure around the Fermi energyµ, along directions shown on Fig. 4 for square varian
spaghetti (rod) lattice (aOy = 27.17 fm).

Fig. 6. Neutron band structure around the Fermi energyµ, along directions shown on Fig. 4 for hexagonal vari
of spaghetti (rod) lattice withaOy = 27.17 fm.

5. Discussion
The results concerning the macroscopic effective neutron mass are illustrated on Fig. 8
and numerical values can be found in Appendix A. The macroscopic effective neutron mass
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Fig. 7. Convergence of computed effective massm⊥
� /m as a function of cell number for an hexagonal lattice w

aOy = 27.17 fm.

Fig. 8. Effective mass of conduction neutronsm⊥
� /m as a function of lattice spacing (aOy) below and above phas

transition from lasagna (slab) regime to spaghetti (rod) regime.

appears to be increased compared to the ordinary neutron mass. The figure also shows t
this renormalisation of the neutron mass is mostly significant at low densities and be

negligible at higher densities where nuclei nearly merge into a uniform mixture. The de-
viations of the effective neutron mass from the bare one can be understood in terms of
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Fig. 9. Example of energy contours in extended Brillouin zone for square lattice. For sufficiently small Ferm
energies the contours are approximately circular as in the free particle case, while at higher energies, the cont
consist of disconnected pieces.

Fig. 10. Fermi surface area for neutronsSF/Sgas as a function of lattice spacing (aOy) below and above phas
transition from lasagna (slab) regime to spaghetti (rod) regime.

modifications of the Fermi surface from a sphere. In particular, as a result of the op
of band gaps the Fermi surface is not smooth but contains many holes as schem
illustrated on Fig. 9. Since the enclosed Fermi volume only depends on the densi
means that the Fermi surface area for a given density is reduced as compared to the c

responding sphere as shown on Fig. 10 (see Appendix A for the numerical values). In the
case for which the Fermi volume is equal to the volume of the first Brillouin zone, the
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Fermi sphere can be distorted and torn such that the resulting surface area simply v
while the volume remains finite. Such a situation occurs in ordinary electric insulato

In the present work we have neglected the spin–orbit coupling which is a sma
turbation in the density region we considered. Taking into account such term would
some degeneracies. The most dramatic change concerns some regions in momentu
around which unperturbed bands are crossing. The breaking of the spin symmetry w
tail that such configuration may be turned into band “kissing” (see Fig. 3) which mean
the group velocity will be strongly reduced around those momenta. This means that
sulting mobility would be lower than the one wehave found. Besides, since the conduct
neutron density is rather unsensitive to such change, it would not be much affected a
therefore the effective neutron mass would be slightly larger than the one calculated he

6. Conclusion

The scattering of dripped neutrons by the nuclei in the inner crust leads on a m
scopic scale to a modification of the neutron massm�, which can be expressed via a w
defined mobility scalarK by m� = n/K in which n is the (arbitrary) density of such un
bound neutrons, andK is found to be expressible as an integral of the group velocitvi

over the corresponding Fermi surface. This effective macro mass should not be co
with the effective micro mass, relevant for subnuclear scales, which is usually found
smaller than the ordinary neutron mass.

Bragg scattering of dripped neutrons is taken into account here by applying Bloc
boundary conditions, which are well known insolid state physics but have been bar
used in this nuclear context. We have computed numerical values of this mobility sc
the bottom layers of the inner crust near the crust-core interface, for simple models in t
“pasta” layers: equally spaced slab shaped nuclei (“lasagna”) and rod like nuclei on eithe
a square or an hexagonal 2D lattice (“spaghetti”).The (anisotropic) entrainment effect
small at such densities since the system is nearly homogeneous. It appears that the
scalar tends to be systematically reduced compared to the homogeneous expression
farther from homogeneity, the smaller is the mobility scalar. The resulting effective
m� is found to be larger than the bare neutron mass. This results can be interpre
a macroscopic manifestation of the modifications in the shape of the Fermi surface ar
Notably as one goes from the homogeneous outer core to the crust, the spherical
Fermi surface gets distorted and even torn and pierced.

The main reason is that the neutron Bragg scattering by crustal nuclei leads to the
ing of energy band gaps. A specific feature of those exotic phases is that the mobility
is bounded,K � 2nn/3m for the “lasagna” phase andK � nn/3m for the “spaghetti” phase
due to the fact that the neutrons are still free to move in one or two dimensions, re
tively. There is no such bound for three-dimensional crystals, for which smaller mo
scalars (larger effective masses) may be expected.

From these considerations, we can infer that the mobility scalarK will increase with
the density, starting from zero in the outer crust below the neutron drip threshold

all neutrons are confined, sincevi = 0 for all states, to its largest possible value in the ho-
mogeneous neutron star mantle. At low densities near neutron drip, where the conduction
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neutron density is negligible compared to the total neutron density,n 	 nn, the crystal
potentialV is quite large but the fraction of the cell occupied by the nuclei is sma
that dripped neutrons propagate essentially freely. Consequently we may expect
K 
 n/m andm� 
 m (on the understanding that, as discussed in Section 3.6, a co
tion state is defined so as to have an associated group velocity that differs signifi
from zero). On the other hand, at very high densities where nuclei nearly merge, the
tial is much weaker and smoothly varying and we shall haven 
 nn, so we expect to find
m� 
 m.

In other words the mean effective massm� is expected to be close to the ordinary m
m at the top (above neutron drip density where neutrons start to leak out of nucle
bottom (where nuclei merge into a uniform mixture of neutrons, protons and electr
density about 1/3 or 2/3 the nuclear saturation densitynsat
 0.16 fm−3 [24]) of the inner
crust, but may reach a much larger value (with astrophysically interesting consequ
in the intermediate layers. This indicates that the unbound neutron band effects (t
effectively neglected in the commonly used W–S approximation) could have impo
consequences as concerns the equilibrium neutron star crust structure and compos

The exploratory character of the present work, justifies the simplicity of single pa
model we used. In a more realistic, Hartree–Fock calculation, the single particle po
and effective neutron mass should have to be determined self-consistently. The po
may contain momentum dependent terms, as with effective nucleon–nucleon intera
of the Skyrme type, which leads to space varying effective neutron massesm⊕{r} which
are typically smaller than the bare neutron mass. However, the general arguments
veloped, relying on the shape of the Fermi surface, suggest that the qualitative res
our calculations, namely the enhancement of the macroscopic effective massm� will re-
main valid in more elaborate single particle schemes. Finally, let us mention that
have shown in a recent paper [9], the neutron pairing is not expected to qualitativel
our present conclusions.
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Appendix A. Numerical results

A.1. Slab shaped nuclei

nn (fm−3) µ (MeV) aOy (fm) n/nn K‖/K⊥ m⊥
� /m SF/Sgas

0.0735 31.70 23.71 0.9634 1.0698 1.0307 0.987
0.0749 32.10 23.07 0.9646 1.0664 1.0286 0.988
0.0773 32.79 22.23 0.9666 1.0605 1.0251 0.989

0.0792 33.36 21.84 0.9687 1.0526 1.0196 0.9910
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A.2. Rod like nuclei

A.2.1. Hexagonal lattice

nn (fm−3) µ (MeV) aOy (fm) n/nn K‖/K⊥ m⊥
� /m SF/Sgas

0.0581 27.2461 27.17 0.9553 1.4102 1.3471 0.889
0.0630 28.7422 25.77 0.9578 1.2972 1.2425 0.914
0.0678 30.1836 24.62 0.9606 1.2225 1.1744 0.932
0.0716 31.2812 23.97 0.9632 1.1668 1.1239 0.947

A.2.2. Square lattice

nn (fm−3) µ (MeV) aOy (fm) n/nn K‖/K⊥ m⊥
� /m SF/Sgas

0.0581 27.2461 27.17 0.9553 1.4673 1.4016 0.877
0.0630 28.7422 25.77 0.9578 1.3231 1.2673 0.908
0.0678 30.1797 24.62 0.9606 1.2124 1.1647 0.934
0.0716 31.2812 23.97 0.9632 1.1473 1.1051 0.952
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