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Phenomena such as pulsar frequency glitches are believed to be attributable to differ-
ential rotation of a current of “free” superfluid neutrons at densities above the “drip”
threshold in the ionic crust of a neutron star. Such relative flow is shown to be locally
describable by adaption of a canonical two-fluid treatment that emphasizes the role
of the momentum covectors constructed by differentiation of action with respect to
the currents, with allowance for stratification whereby the ionic number current may be
conserved even when the ionic charge number Z is altered by beta processes. It is demon-
strated that the gauge freedom to make different choices of the chemical basis determin-
ing which neutrons are counted as “free” does not affect their “superfluid” momentum
covector, which must locally have the form of a gradient (though it does affect the
“normal” momentum covector characterizing the protons and those neutrons that are
considered to be “confined” in the nuclei). It is shown how the effect of “entrainment”
(whereby the momentum directions deviate from those of the currents) is controlled by
the (gauge-independent) mobility coefficient K, estimated in recent microscopical quan-
tum mechanical investigations, which suggest that the corresponding (gauge-dependent)
“effective mass” m� of the free neutrons can become very large in some layers. The
relation between this treatment of the crust layers and related work (using different
definitions of “effective mass”) intended for the deeper core layers is discussed.

Keywords: Effective mass; neutron superfluid; neutron star crust.

1. Introduction

As a prerequisite for the quantitative analysis of the role of differential rotation
in the angular momentum transfer mechanism that is thought1 to be responsible
for phenomena such as pulsar glitches, the purpose of this paper is to describe the
adaptation to the special circumstances pertaining to the inner crust of a neutron
star of the kind of nonrelativistic two constituent fluid formalism that has already
been applied2,3 to the global description of the main bulk of the star, in which the
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basic constituents are relatively moving currents of protons and neutrons, using
a treatment of the nondissipative kind4,5 that has recently been developed in a
variational formulation6–8 that, although nonrelativistic, can nevertheless be very
conveniently expressed in a fully covariant manner.9,10 (A nondissipative treatment
is useful as a good first approximation in view of the superfluidity of the neutrons,
but in any case, after the appropriate action function has been obtained in the
manner described later, it will be possible to use it as an equation of state in a less
idealized model of the kind11 needed to allow for dissipation and for the relativistic
effects12 that are important at a global level.)

Such a two-fluid treatment does not take account of the third independent cur-
rent, namely that of the electrons, that is of dominant importance for electromag-
netic effects, but which makes a relatively negligible contribution to the Newtonian
mass transport effects under consideration here. Allowance will, however, be made
here for an important special feature of the crust layers (providing stratification
that contributes to stability against convection) namely the clustering of the pro-
tons into ions, whose number current can remain conserved even after allowance for
possible variation of the ionic charge number Z due to weak interactions whereby
protons are transformed into neutron or vice versa. Another special stabilizing fea-
ture of the crust that will also need to be allowed for, but that will be left for
subsequent work is that of the (relatively small) stress anisotropy that can arise
from the elastic solidity14 of the crust, or from strong magnetic fields.13

This paper is particularly concerned rather with allowance for the effect of
relative “entrainment”15 between, on the one hand, the effectively free neutrons
that will be present above the “neutron drip” density threshold (of the order of
1011 g cm−3) and that are expected to behave as a superfluid except at very high
temperature, and, on the other hand, the protons, which (together with the ions to
which they are confined) will behave as an effectively “normal” fluid in the crust,
though they may behave as another superfluid in the deeper layers at densities
above the nuclear threshold of the order of 1014 g cm−3 at which the ions merge.

One of the main goals of this paper is to clarify the relationships between differ-
ent kinds4,5 of definition of “effective mass” that have been introduced by various
authors as a quantitative measure of the “entrainment” effect, and particularly, to
provide a discussion of the way such masses depend on the gauge freedom involved
in the choice of a chemical basis for the purpose of specifying just which neutrons
are considered to be free. In the homogeneous (unclustered) phase above the nuclear
density threshold prevailing in the liquid core the neutrons will all be effectively
free, while in the outer crust below the “drip” threshold it is clear that none of
them will be free, in the “operational” sense of being able to penetrate the poten-
tial barriers between nuclei in an astrophysical timescale shorter than the age of
the universe. In the inner crust at densities just above this threshold, neutrons in
low and intermediate energy states will still be effectively confined, but there will
be a clear-cut critical energy above which they will be effectively free to travel over
ionic separation distances on a microscopically short timescale.
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The problem is that, at deeper levels in the crust, such an “operational” discrim-
ination between “confined” and “free” neutron states will no longer be so clear-cut,
because the ionic wells will get too close for the exponential suppression outside
to be fully effective, so that there will be marginally bound states with intermedi-
ate penetration time scales that are macroscopically long but cosmologically short.
This means that there will be some degree of ambiguity that needs to be resolved
by a more or less arbitrary choice of a chemical gauge whereby the baryon number
A of the ionic clusters is prescribed as a function of their (depth-dependent) charge
number Z. Fortunately, as will be shown later, the most important quantities in
the two-fluid formalism at a local (intervortex) level notably the action density Λ
with its concomitant energy function, and in particular the (irrotational) superfluid
neutron momentum, all turn out to be robustly independent of which particular
(“operational” or other) gauge criterion is used.

Following this discussion of the different ways of formulating the generic treat-
ment of entrainment in the two-fluid formalism, a more particular purpose of this
work is to show how quantitative values of the relevant “effective mass” are provided
by the corresponding (gauge-independent) “mobility coefficient” K for which quan-
titative estimates are obtainable from the kind of microscopic analysis described in
our immediately preceding work.16 This analysis is based on a nonrelativistic quan-
tum mechanical formalism of the type introduced by Oyamatsu and Yamada17 in
a local frame with respect to which the ionic crust lattice is at rest, so that it gives
rise to a static effective potential having a periodic dependence on the cartesian
space coordinates xi. The analysis is carried out in terms of single particle wave
functions subject to Bloch-type boundary conditions (meaning that they deviate
from ordinary periodicity by a phase factor of the form exp{ikix

i}) of the kind that
is commonly used for electrons in ordinary solid-state physics, but that has not
yet been systematically employed for analogous problems involving neutrons. In a
follow-up paper18 we have shown how the method can be extended to include the
moderate adjustments arising from the effect of BCS-type superfluid pairing.

The mobility coefficient K, which is provided by this analysis, has a value which
is interpretable as the ratio of the density n of “free” (“conduction”) neutrons to
their effective mass m�. It was suggested by our preliminary results16 and has been
confirmed by more recent work19 that this value is most likely to be much larger than
had been expected. Even when measured with respect to an “operational” gauge
as shown in Fig. 4 in which the number density n of neutrons that are counted as
“free” allows only for those that are not bound inside ionic nuclei, the quantity m�

is quite likely to become extremely large compared with the ordinary neutron mass
m in the middle layers of the inner crust. It would of course be even larger with
respect to the very simple “comprehensive” gauge in which all the neutrons are
counted as “free” so that, as shown in Fig. 3, the corresponding “effective mass”
would in any case diverge as the density decreases to the “neutron drip” value.

The purely Newtonian (i.e. nonrelativistic) framework within which the work
of this paper is carried out should be adequate, on a local scale, as a fairly good
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approximation in the density regime under consideration. This lower crust regime
extends from the “neutron drip” threshold to the transition to a purely fluid (at
low temperatures actually superfluid) mixture of neutrons and protons at the base
of the crust where the mean density approaches that of ordinary nuclear matter
(at a value of the order of about 1014 g cm−3). In a global representation of the
neutron star (on scales of the order of a kilometer or more) there will be significant
deviations from flat geometry whose quantitative treatment would require the use
of General Relativity, but the discussion here will be limited to a local neighborhood
that is sufficiently small (on scales of the order of a centimeter or less) to be treated
as approximately homogeneous and geometrically flat. Even on such a purely local
scale it would be necessary to use a special relativistic (Minkowski space) description
if we were concerned with effects involving the electrons, but the rest mass of the
neutrons, to which the present analysis is restricted, is so much higher that a purely
Newtonian analysis should be quite adequate in the moderate energy range (up to a
few tens of MeV) that is involved. This contrasts with the state of affairs in the fluid
core of the neutron star, where estimation of the relevant “entrainment” between
(superfluid) neutrons and protons requires a different kind of treatment20 in which
allowance for relativity is important, but where the effect of the entrainment is
much more moderate. An implication is that to improve on previous work21 that
ignored the effects both of relativity and of entrainment in the analysis of angular
momentum transfer in the crust, the effect of relativity is of secondary importance,
and that the first priority is to include the relevant allowance for the effective mass
enhancement due to entrainment.22

2. Generic Two-Fluid Models with Stratification

2.1. The canonical master function

In astrophysical contexts for which a nonrelativisitic Newtonian mechanical descrip-
tion is adequate it will usually be sufficiently accurate to represent the relevant
distribution of mass just in terms of a conserved current of baryons characterized
by a single constant mass parameter, m say, that can be taken to be the standard
atomic mass unit or simply the proton mass which is different only by a fraction of
a per cent and so is near enough for practical purpose. It is convenient for many
purposes to use a four-dimensional notation scheme9–11 in which, for example, the
total baryon number density nb say, and the corresponding baryon current density
components ni

b with respect to space coordinates xi (i = 1, 2, 3) are combined to
form a 4-current nν

b (ν = 0, 1, 2, 3) whose time component is given by n
0

b = nb. This
means that the total baryon conservation law,

∂nb

∂t
+ ∇i n

i
b = 0, (2.1)

will be expressible more concisely as

∇νnν
b = 0. (2.2)

(Throughout this paper, summation over repeated indices is assumed.)
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Our purpose here is to consider situations involving relative motion between an
uncharged contribution nν

n that will be attributable mainly to neutrons (but perhaps
including other neutral hyperons such as the Λ in the inner core regions) and an
electrically charged contribution nν

p that will similarly be attributable mainly to
protons. (It is to be understood that overall electrical charge balance is ensured by
a nonbaryonic current attributable mainly to electrons, whose mass contribution
is so small that it can be neglected.) The two independent baryonic contributions
combine to give the conserved total baryon current

nν
b = nν

n + nν
p. (2.3)

In dynamic processes on short timescales the neutron and proton currents may each
be considered to be separately conserved, meaning that the 4-divergences,∇νnν

n and
∇νnν

p, will both vanish individually, but in long-term “secular” evolution processes
it will be necessary to allow for the possibility of converting neutrons to protons or
vice versa by weak interaction processes.

The present discussion will be concerned with cases in which the evolution of
the separate contributions nν

n and nν
p can be described by a multiconstituent fluid

model of the kind governed by a master function Λmat, that acts as the mate-
rial (meaning nongravitational) part of a Lagrangian in effectively conservative
applications,9,10 but that is also compatible with allowance for potentially relevant
dissipative effects.11 Such a multifluid description does, however, entail neglect of
the extra energy contributions due to possible elastic solid deformations,14 and to
frozen in magnetic fields,13 whose inclusion would require a more elaborate treat-
ment. Apart from depending on the separate currents nν

n and nν
p, it is useful to

allow for the potentially important effect of stratification due to baryonic cluster-
ing forming ionic nuclei characterized by a charge number Z and hence by a number
density that is expressible as

nI =
np

Z
, (2.4)

wherever the density is below the saturation density of the order of 1014 g cm−3.
This means that the generic variation of the master function will be given in terms
of corresponding partial derivative coefficients by an expression of the form

δΛmat = −µI δnI + µn
ν δnν

n + µp
ν δnν

p, (2.5)

or equivalently in the less compact form of a traditional (3 + 1) space–time decom-
position by an expression of the form

δΛmat = −µI δnI − µn δnn − µp δnp + µn
i δni

n + µp
i δni

p, (2.6)

in which µn
i and µp

i will be, respectively, interpretable as the mean momentum per
particle of the neutrons and of the protons, while the quantities

µn = −µn
0
, µn = −µn

0
, (2.7)

will be interpretable as the corresponding neutronic and protonic chemical poten-
tials, while the coefficient µI is an ionic cluster potential, whose gradient, if any,
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represents the effect of stratification. This potential can be used to construct a
corresponding 4-momentum covector that is given in terms of the gradient of the
Newtonian time coordinate x0 = t by the formula

µI
ν = −µI tν , tν = ∇ν t = δ0

ν , (2.8)

which means that it has vanishing space components, µI
i = 0, as an expression of

the fact that (in the Newtonian limit) the clustering contributes only to energy but
not to mass.

The models we are considering are intended for application to neutron star
matter after it has cooled down sufficiently for its dynamics to be hardly affected
by thermal effects, which are not included. These models are to be interpreted as
being governed by dynamical equations that are formally identical to those of the
heat convecting thermal model presented in the appendix of the work11 referred to
earlier, with the ionic cluster potential µI taking the place of the temperature Θ,
and with the ionic number density nI taking the place of the entropy density s,
so that the entropy current 4-vector sµ is to be replaced here by the ionic number
current 4-vector nν

I as given in terms of the flow 4-vector uν
c of the crust by

nν
I = nI uν

c , uν
c =

nν
p

np
. (2.9)

In terms of the generalized pressure function

Ψ = Λmat + nI µI − nν
pµp

ν − nν
nµn

ν , (2.10)

and the Newtonian gravitational potential φ the corresponding material energy
momentum 4-tensor10 will therefore be given by

Tµ
ν = nµ

I µI
ν + nµ

pµp
ν + nµ

nµn
ν + Ψδµ

ν − φmnµ
btν . (2.11)

This means that, if the only external force is gravitation, the total force balance
equation will then be expressible as

∇µTµ
ν = −mnb∇νφ, (2.12)

while the condition of conservation of entropy in the conservative case is to be
replaced here by the ionic cluster conservation condition

∇νnν
I = 0, (2.13)

which can be expected to be valid, not just in short timescale dynamic processes in
which there would be separate conservation of the neutrons

∇νnν
n = 0 (2.14)

(and hence also, according to (2.2), of the protons) but even in processes having the
much longer timescales needed for weak interactions to adjust the relative numbers
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of protons and neutrons so as to achieve the condition of “beta equilibrium,” namely
vanishing of the affinity

A = (µn
ν − µp

ν)uν
c , (2.15)

as specified with respect to the “normal” rest frame specified by uν
c , which is that

of the protons (and therefore also of the ions) as opposed to that of the neutrons,
whose superfluidity at low temperatures allows them to retain a relative motion
(at densities above the neutron drip threshold) even in a state of exact nondissipa-
tive equilibrium. On timescales even longer than needed for the beta equilibrium
condition,

A = 0, (2.16)

it is ultimately to be expected that barrier tunnelling processes involving nuclear
fission and recombination would lead to violation of (2.13) in such a way as to efface
the stratification by allowing the ionic cluster potential µI to tend towards zero, but
in practice the stratification will commonly survive long enough to have important
stabilizing consequences, particularly in the outer layers of the neutron star.

To provide a complete system of evolution equations for the dynamic variables
nI, nν

n, and nν
p, the system consisting of (2.12) and (2.13), together with one of the

alternative possibilities (2.14) or (2.16), does not suffice, but must be supplemented
by a further condition, which can simply be taken to be the mesoscopic neutron
superfluidity condition to the effect that the total neutron momentum covector,

πn
ν = µn

ν − φmtν , (2.17)

should be proportional to a phase gradient, taking the form

πn
ν = �∇ν ϕn, (2.18)

in which the phase variable ϕn has period π (not 2π) due to the fermionic half
integer spin of the neutrons.18 (This corresponds to a period having the usual
value 2π for the corresponding phase ϕ = 2ϕn for Cooper pairs with momentum
covector 2πn

ν .)

2.2. Chemical invariance of superfluid momentum

To obtain a formulation that is consistent with traditional usage in the low density
regime with density less than the order of 1011 g cm−3 for which the neutrons will
also be effectively confined within the nuclei, it is useful to introduce a dependent
variable, Ac, that is to be interpreted as the total number of effectively “confined”
baryons per nucleus, and that specifies a corresponding “confined” baryon number
current nν

c , which will be given by

nν
c = Acn

ν
I . (2.19)

The “confined” baryon number Ac = nc/nI will evidently lie somewhere in the range
Z ≤ Ac ≤ Ab, where Ab = nb/nI is the total baryon number per nucleus, which
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will of course be the same as Ac at densities below the “neutron drip” threshold.
As a corollary there will also be a corresponding “free” neutron current given by

nν
f = nν

b − nν
c , (2.20)

which will be nonvanishing at densities above the “neutron drip” threshold. In
the deeper layers of the ionic “crust” region where the clusters are near to stage of
merging they may become highly deformed to “spaghetti” or even “lasagna” shaped
configurations23,24 for which (as remarked in the introduction) the meaning of the
absolute numbers Z and A may become rather hazy, but this need not prevent the
ratio

ac =
Ac

Z
=

nc

np
(2.21)

of the “confined” baryon number density to the charged baryon number den-
sity from remaining definable according to some ansatz that might reasonably be
required to specify ac as a weakly dependent function of Z in such a way that beyond
the transition to an unclustered homogeneous phase above ordinary nuclear matter
density, the corresponding “free” neutron current nν

f will simply become the same
as the entire neutron current nν

n, while at lower densities it would be determined
by the equation of state for “cold catalyzed” matter whereby all relevant scalars,
including Z and Ac, are given (in such a way as to minimize the energy density) as
functions of nb.

However that may be, subject to the specification of any reasonable (realistic or
idealized) equation of state for Ac as a function just of Z so that the variation of the
ratio ac{Z} will be given in terms of its derivative a′

c = dac/dZ by an expression
of the form

δac = Za′
c

(
δnp

np
− δnI

nI

)
, (2.22)

it will be possible, and for some purposes convenient, to make a corresponding
chemical basis transformation whereby the new (empirically defined) current vari-
ables nν

f and nν
c are used in place of the original (more physically fundamental)

current variables nν
n and nν

p as the independent variables of the system. In terms of
the new chemical basis, as specified by the homogeneous linear transformation

nν
f = nν

n + (1 − ac)nν
p, nν

c = acn
ν
p, (2.23)

the generic variation (2.5) of the master function and the corresponding energy
momentum tensor (2.11) will be expressible in the exactly analogous forms

δΛmat = −µ̃I δnI + µf
ν δnν

f + µc
ν δnν

c , (2.24)

and

Tµ
ν = nµ

I µ̃I
ν + nµ

c µc
ν + nµ

f µf
ν + Ψδµ

ν − φmnµ
btν , (2.25)
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with

Ψ = Λmat + nI µ̃I − nν
cµc

ν − nν
f µf

ν , (2.26)

in which the adjusted ionic cluster potential µ̃I and the correspondingly adjusted
analogue

Ã = (µf
ν − µc

ν)uν
c , (2.27)

of the affinity (2.15) will be related to their untransformed analogues by

A = Ã(ac + Za′
c) (2.28)

and

µI = µ̃I − Z2Ã a′
c, (2.29)

while the new “free” and “confined” baryon momentum 4-covectors µf
ν and µc

ν will
be given in terms of their untransformed analogues µI, µf

ν , µc
ν , by the relations

µp
ν = µc

ν + (1 − ac)(µf
ν − µc

ν) − ZÃ a′
ctν (2.30)

and

µn
ν = µf

ν . (2.31)

This last result is important: it tells us that whereas the momentum covector µc
ν

associated with the “confined” part has a rather complicated dependence on the
chemical gauge specified by the choice of the functional dependence of ac on Z,

on the other hand the momentum covector µf
ν associated with the “free” neutron

current is invariant with respect to the change of gauge. The correponding total

πf
ν = µf

ν − φmtµ, (2.32)

is just the same as its analogue (2.17) in the original formulation, so that the
superfluidity condition (2.18) will be expressible in terms of the same phase variable
ϕ in exactly the same way as before, meaning that it will be given simply by

πf
ν = �∇ν ϕ. (2.33)

The upshot of this is that if the set of dynamical equations is completed by the
beta equilibrium condition (2.16), which according to (2.28) will be expressible in
the language of the new formulation simply by

Ã = 0, (2.34)

then the entire system will be chemically covariant in the sense of having the same
form regardless of the choice of the gauge function ac{Z} in the chemical basis
transformation (2.23).

On the other hand if (as will be appropriate for cases involving relatively short
dynamical timescales) the beta equilibrium condition (2.16) is replaced by the sep-
arate neutron current conservation condition (2.14) then the complete system will
be chemically covariant only with respect to transformations in which ac is simply
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taken to be constant, as for example in what we shall refer to as the “comprehensive
gauge,” which is given simply by ac = 1 so that absolutely all of the neutrons are
classified as “free,” while a less trivial example is that of what may be described as
the “paired gauge,” which is given by ac = 2, and which is interpretable as meaning
that the only neutrons classified as “confined” are those in the tightly bound states
that are directly paired with corresponding proton states in the nuclei. However, if
we wish to use ac to provide a more realistically “operational” estimate of the total
baryon to proton number ratio in the nuclei, it will need to be given a nonvanish-
ing derivative a′

c, and in that case the corresponding formulation of the separate
conservation condition (2.14) will have the patently gauge-dependent form

∇ν nν
f = −a′cn

ν
c∇ν Z. (2.35)

2.3. Local energy function

To obtain information about the equation of state giving the functional dependence
of the material action density Λmat on the relevant independent variables by com-
parison with the results of a microphysical analysis, it is convenient to work with
the corresponding energy function. The complete energy momentum tensor (2.25)
comes from a complete action density Λ = Λmat + Λpot in which, as discussed in
the previously cited work,10 the gravitational potential energy contribution is given
simply by Λpot = −ρφ, with ρ = mnb so the corresponding energy U = −T 0

0
will

have the form of a sum U = Umat + Upot involving a gravitational contribution
Upot = −Λpot that must be subtracted off to leave the purely material part Umat

corresponding just to Λmat. It can thus be seen that this material energy density
will be given (for an arbitrary choice of the chemical gauge function ac{Z}) by

Umat = µ̃I nI − µf
0
nf − µc

0
nc − Ψ, (2.36)

which, by (2.26) , is evidently equivalent to taking

Umat = µf
i ni

f + µc
i ni

c − Λmat. (2.37)

So long as the relevant velocities are sufficiently small, it will be possible to
decompose the material Lagrangian and energy density in the form

Λmat = Λins + Λdyn, (2.38)

and

Umat = U ins + Udyn, (2.39)

in terms of a static internal energy contribution

U ins = −Λins, (2.40)

that will depend only on the relevant ionic and (free and confined) baryon number
densities namely nI, nf , nc, together with a dynamic contribution for which the
velocity dependence is homogeneously quadratic so that as for the purely kinetic
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part10 the corresponding energy contribution will be the same as the Lagrangian
contribution from which it is derived, having the form

Λdyn = Udyn =
1
2
(µf

i ni
f + µc

i ni
c). (2.41)

This means that it will be given as a function of the current components ni
f and ni

c

by an expression of the form

Λdyn =
1
2
γij

(Kff ni
f nj

f + 2Kfc ni
f nj

c + Kcc ni
c nj

c

)
, (2.42)

in which the coefficients Kff , Kcc, and Kfc are functions only of nI, nf , and nc. It
follows from the Galilean covariance requirements9 in the decomposition (2.58) to
be discussed in Sec. 2.4 that these coefficients must satisfy the conditions

Kffnf + Kfcnc = m, Kccnc + Kfcnf = m, (2.43)

which means that only one of these coefficients needs to be specified. It follows
from (2.42) that the momenta defined by (2.6) will be given as homogeneous linear
functions of the currents by

µf
i = γij

(Kff nj
f + Kfc nj

c

)
, µc

i = γij

(Kfc nj
f + Kcc nj

c

)
. (2.44)

These relations will be invertible to give the expressions

ni
f = γij

(Kff µf
j + Kfc µc

j

)
, ni

c = γij
(Kfc µf

j + Kcc µc
j

)
, (2.45)

in which the original coefficients will be related to the new ones by

Kff =
Kcc

KffKcc −Kfc 2
, Kfc =

−Kfc

KffKcc −Kfc 2
, Kcc =

Kff

KffKcc −Kfc 2
. (2.46)

In terms of these new coefficients, the covariance conditions (2.47) are expressible as

Kff + Kfc =
nf

m
, Kcc + Kfc =

nc

m
. (2.47)

The expression (2.42) is convertible to the dual form

Udyn =
1
2
γij

(Kff µf
i µf

j + 2Kfc µf
i µc

j + Kcc µc
i µc

j

)
. (2.48)

The requirement that (in order to ensure that the minimum energy configuration
is the one in which the currents vanish) the dynamical energy density Udyn in
expressions (2.42) or (2.48) should be positive definite, implies that the on-diagonal
coefficients should all be positive, as well as the restrictions

Kff Kcc > (Kfc)2, Kff Kcc > (Kfc)2, (2.49)

which can be seen from (2.46) to entail that the off-diagonal coefficients Kfc and
Kfc should have opposite signs.
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2.4. Specification of the entrainment coefficient

To relate the canonical approach described earlier with a description of the tradi-
tional kind4,15 in terms of 3-velocities and densities, the dynamical energy density
has to be rewritten in terms of the relevant current 3-velocity vectors vi

c and vi
f as

specifed with respect to chosen Galilean rest frame by setting

ni
c = nc vi

c, ni
f = nf vi

f , (2.50)

which means that vi
c will be physically well defined as the “normal” velocity of the

ions and the rigorously confined proton current, for which we shall have

ni
I
= nI vi

c, ni
p = np vi

c, (2.51)

whereas vi
f depends on the chemical gauge function ac{Z} that is chosen to deter-

mine which of the neutrons are classified as “free.” The chemical gauge-dependent
but Galilean frame-independent relative flow velocity vector

v̄i
fc = vi

f − vi
c (2.52)

can then be used for construction of the relative current 3-vector

ni = nf v̄i
fc, (2.53)

which apart from being evidently frame-independent also has the noteworthy prop-
erty of being physically well defined in the sense that (like the neutron momen-
tum covector µf

i) it is unaffected by a change of the gauge parameter ac in
(2.23). This can be seen from the possibility of rewriting it directly in terms of
the unambiguously well-defined total baryonic number density nb = nf + nc, and
the unambigously defined “normal” 3-velocity vector vi

c, in the form

ni = ni
b − nbv

i
c, (2.54)

which is manifestly independent of any prescription for specifying which neutrons
are deemed to be “confined” and which are deemed to be “free.” (Before continuing
it is to be remarked that subject to substitution of total lepton number current,
nν

e say, in place of the total baryon number current nν
b given earlier, a precisely

analogous relation applies in the context of electron conductivity in ordinary solid-
state physics.)

We can now proceed to convert the dynamical energy formula to the generic
form

Udyn =
1
2
γij

(
ρff vi

f vj
f + 2ρfc vi

f vj
c + ρcc vi

c vj
c

)
, (2.55)

in which the required mass density matrix components can be read out as

ρff = Kff n2
f , ρfc = Kfc nfnc, ρcc = Kcc n2

c . (2.56)

This expression (2.55) is to be compared with the alternative arrangement
whereby the decomposition

ρ = ρf + ρc, (2.57)
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of the total mass density ρ = mnb, determines a corresponding decomposition

Udyn = Ũkin + Ũ ent, (2.58)

in which the first term is a kinetic energy contribution of the standard form

Ũkin =
1
2
(
ρf v2

f + ρc v2
c

)
, (2.59)

while the second term Ũent in (2.58) is a frame-independent “entrainment” con-
tribution that can depend only on the magnitude v̄fc of the relative velocity (2.52)
and must therefore be given in terms of some “entrainment” mass density ρ̄fc by

Ũ ent =
1
2
ρ̄fc v̄2

fc. (2.60)

Substituting (2.60) and (2.59) in (2.58), and comparing the result with the pre-
ceding expression (2.55) for Udyn, we see that the density coefficients in the latter
will be given by

ρff = ρf + ρ̄fc, ρfc = −ρ̄fc, ρcc = ρc + ρ̄fc. (2.61)

It is to be observed that the values of all the density coefficients involved will of
course depend on the choice of the chemical gauge parameter ac that is used for
the specification

ρf = mnf = m(nb − ac np), ρc = mnc = mac np. (2.62)

of the relevant “bare” mass densities in the decomposition (2.57).
The foregoing relations can be translated into the terminology of effective masses

by introducing the values mf
� and mc

� according to the specifications

ρff = nf mf
�, ρcc = nc mc

�, (2.63)

so that one obtains

γijµf
j = mf

�(v
i
f − vi

c) + mvi
c, γijµc

j = mc
�(v

i
c − vi

f) + mvi
f . (2.64)

The respective deviations, mf
c and mc

f say, of these effective masses from the ordi-
nary baryonic mass m will be given in terms of the entrainment density by the
familiar expressions5

mf
c = mf

� − m =
ρ̄fc

nf
, mc

f = mc
� − m =

ρ̄fc

nc
. (2.65)

It can be seen from (2.65) that both effective masses are either larger or smaller
than m, but one effective mass cannot be larger than m and the other smaller. In
particular, whenever one of the effective masses coincides with the ordinary baryon
mass, this entails that the other one is also equal to the ordinary mass.

It is important to distinguish the true (current) 3-velocities used here from the
pseudovelocities that are referred to in many older and even recent discussions2

as “superfluid velocities,” and that are constructed by dividing the correspond-
ing 3-momentum by the relevant mass parameter. The example that arises in the
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present context is that of the so-called “superfluid neutron velocity” V S
i , which is

obtained by setting

µf
i = m V S

i . (2.66)

The corresponding “normal velocity” vi
N

is not a pseudovelocity but a true velocity
in the sense of being the space projected part of a physically well-defined 4-velocity,
namely that of the crust reference frame as given by uν

c , so that we can make the
identification vi

N = vi
c. This leads to a corresponding density decomposition

ρ = ρS + ρN, (2.67)

(which unlike (2.57) is not affected by the choice of the gauge parameter ac as
will be shown later) in terms of which the dynamical energy will be expressible
simply as

Udyn =
1
2
(
ρS V S2

+ ρN vN
2
)
, (2.68)

with the so-called “superfluid density” ρS and the so-called “normal density” ρN

given in the notation of (2.65) by

ρS =
ρf m

mf
�

, ρN = ρc +
ρf mf

c

mf
�

. (2.69)

3. Underlying Physical Theory of Neutron Conduction

3.1. Microscopic analysis in the crust frame

As it is not practical to carry out direct experimental measurements for bulk matter
at neutron star densities, the evaluation of the relevant equation of state functions
requires a theoretical analysis based on an underlying physical model. In particular,
to provide the quantitative estimates19 needed for obtaining the entrainment den-
sity, or the corresponding neutronic effective mass in the ionic crust layers above
the neutron drip density threshold, it is necessary to use a microscopic model of
the kind whose essential elements were presented in our preceding work16 and that
we have recently developed in a follow-up18 allowing for the effect of BCS pairing.

The approach we use provides a typical continuum fluid description as formu-
lated in terms of mesoscopically homogeneous configurations that are obtainable
from a corresponding microscopic theory by the minimization subject to relevant
constraints of the energy density U that is defined in terms of a quantum system
in a unit volume sample box (subject to periodic boundary conditions) as the aver-
aged expectation value, which we indicate by angle brackets, of the relevant total
Hamiltonian operator Ĥ say, i.e. U = 〈Ĥ〉. The analysis will be carried out using
the crust rest frame, in which the heavy ionic nuclei can be treated as classical parti-
cles at fixed positions, to which all the protons and a subset of “confined” neutrons
are considered to be bound. For simplicity a quantum description is applied only
to “free” (unconfined) neutrons (whose role is analoguous to that of “conduction”
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electrons in ordinary solid-state theory) whose Bragg scattering by the potential
wells associated with the nuclear clusters gives rise to strong entrainment effects.

In a strictly static configuration the only relevant constraint is the preservation
of the number density n of such unconfined neutrons, which is definable as the
corresponding average n = 〈n̂〉 of a conserved particle number operator n̂ say.
The minimization of U subject to such a constraint is equivalent to the absolute
minimization of a combination of the form

U ′ = U − µn, (3.1)

in which µ is a Lagrange multiplier that will be interpretable as the relevant chem-
ical potential. For any given value of n the corresponding constrained minimum
state can be expected on symmetry grounds to be static, in the sense of containing
no relatively moving currents. To obtain the relatively conducting configurations in
which we are interested here, we need to impose the further constraint of preser-
vation of the relevant current components ni (with respect to the rest frame of the
sample box, i.e., in the crust frame) as defined by the corresponding averages of
the relevant quantum operators ni = 〈n̂i〉 say. The problem will thus be that of
minimizing a combination of the form

U ′
{p} = U ′ − pi ni, (3.2)

in which the quantities pi are Lagrange multipliers that will be seen to be inter-
pretable as representing effective momentum per particle, so that an infinitesimal
variation in the neighborhood of such a conditionally minimized energy density will
be given by

δU = µδn + piδn
i. (3.3)

This means that the multipliers µ and pi can be construed as partial derivatives
with respect to number density and current, respectively.

Subject to the realistic assumption that the current is small, the energy density
will be close to the static internal energy value U ins say (minimizing U ′) in the state
of zero current characterized by a given value of the number density n and the ionic
charge number Z. It will therefore be expressible by an expansion that will be given
to second order in the current density ni by a decomposition of the form

U = U ins + Udyn, (3.4)

in which — for a given value of the charge number Z and the confined particle num-
ber density nc which, in the present case are considered as given classical variables
in the microscopic model — the static internal energy density U ins will depend just
on the relevant particle number density n, so that it will be expressible as

U ins = U ins{Z, nc, n}, (3.5)



July 21, 2006 16:55 WSPC/142-IJMPD 00850

792 B. Carter, N. Chamel & P. Haensel

while the dynamical contribution is given in terms of a positive definite matrix with
tensor components Kij that also depend just on the same three scalar variables by
an expression having the homogeneous quadratic form

Udyn =
1
2
K−1

ij ninj . (3.6)

By differentiating this expression with respect to the current components, it can be
seen that in terms of the momentum components appearing as partial derivative
coefficients in the variation formula (3.3), the current will be given by the formula

ni = Kijpj . (3.7)

In practice n and nc can be expected to remain close to values that are deter-
mined as functions of Z and the total baryon number density nb by a condition
of chemical equilibrium whereby U ins is minimized, with value U eq say, for the
given values of Z and nb, where n will have a value, neq say, that is determined
as a function of Z and nb and hence of the corresponding value of nc. Therefore,
rather than considering the coefficients Kij to be functions of the three independent
variables Z, nc, and n, it should be an adequate approximation to consider them
to be functions just of the pair of variables Z and nc that determine the classical
background field in the model. This allows us to deduce from (3.3) that the partial
derivative with respect to n of the static internal energy density function (3.5) will
be given exactly by

∂U ins

∂n
= µ. (3.8)

For accuracy of linear order in deviations from chemical equilibrium, it will therefore
suffice to take the function (3.5) to have the simple form

U ins = U eq + µ(n − neq), (3.9)

in which Ueq, neq, and µ itself are all functions just of the pair of variables nc and
Z that characterize the mean density and degree of clustering of the underlying
distribution of protons.

The mobility tensor Kij defined by the formula (3.7) might be anisotropic in a
solid14 of perfectly regular crystalline type, but one would expect it to be given by
an expression of the isotropic form

Kij = Kγij , (3.10)

in which the scalar coefficient will evidently be given by

K =
1
3
γijKij , (3.11)

not only for a medium that is a liquid (as will be the case in a neutron star crust
when the star is very young) and for the case of a solid having a glass-like or
disordered crystalline structure on a macroscopic scale (as is likely to be the case
in a realistic description of a neutron star crust) but even for a perfectly regular
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crystal lattice provided it is of a cubic type (such as will be energetically favored
throughout the neutron star crust except near the base where rod- or slab-like
structures may be preferred).

In terms of the mobility scalar introduced in this way, the relation between
current and momentum (in the crust frame) will be given by

ni = Kγijpj , (3.12)

and the corresponding final result for the dynamical energy contribution in (3.6)
will be given by

Udyn =
1
2
Kγijpipj =

1
2
K−1γij ninj . (3.13)

3.2. Matching with the macroscopic description

To match the microscopic quantum mechanical description in Sec. 3.1 with the
macroscopic fluid description summarized earlier, an obvious first step is to take
the convention that the fraction of the neutrons that is considered to be bound to
the ionic nuclei is such that we can identify the unbound neutron number density
n with the free neutron number density nf introduced earlier.

Having thus set

nf = n, (3.14)

we go on to observe that in the crust frame characterized by vi
c = 0 in which the

preceding microscopic analysis was carried out the free neutron current will just be
the same as the (gauge-independent) conduction current (2.53) so we shall be able
to make the further identification ni = ni

f .

It can be seen that with respect to this particular frame the kinetic energy will
simply be given by

Ũkin =
1
2

mnf γij vi
f vj

f =
1
2

m

nf
γij ninj . (3.15)

To evaluate the (frame-independent) entrainment energy that is definable, in accor-
dance with (2.58) as

Ũ ent = Udyn − Ũkin, (3.16)

it now suffices to substitute the formula (3.6) for the dynamical part, which provides
the required result in the form

Ũent =
1
2

(
K−1

ij − m

nf
γij

)
ninj , (3.17)

which is noteworthy for remaining valid for application to the elastic solid models14

that will ultimately be needed, in which the mobility tensor Kij need not always
be isotropic.
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In the fluid case characterized by (3.10) with which we are concerned here, the
formula (3.17) reduces to

Ũent =
1
2

(
1
K − m

nf

)
γij ninj . (3.18)

By comparison with (2.60) the entrainment density can be read out from this as

ρ̄fc =
n2

f

K − ρf
, (3.19)

which by (2.61) implies

ρff =
n2

f

K . (3.20)

This quantity depends on the choice of chemical basis, but we can use (2.56) to
obtain the corresponding coefficient

Kff = K−1, (3.21)

which has the important property of being gauge-invariant in the sense that it is
independent of the choice of the gauge parameter ac that has been used in (2.23) for
specifying the number density nf of neutrons that are counted as “free.” The gauge
independence of the tensor K−1

ij and thus of the scalar K is an evident consequence
of the gauge independence of the relative current vector (2.54) in terms of which
it was defined in (3.6).

We can go on to rewrite the formulae (2.69) for the so-called “superfluid” and
“normal” density contributions in the manifestly gauge-independent form

ρS = ρ − ρN = m2K. (3.22)

This shows that the “superfluid” density contribution ρS will tend to zero when
the mobility coefficient K tends to zero, which is what occurs at the “neutron drip”
transition (whose role is thus analogous to that of the “lambda point” transition in
ordinary liquid helium).

The actual evaluation of the required mobility coefficient K as a function of the
relevant densities has been initiated in the preceding work,16 which describes
the way in which a simple nuclear physical treatment can be applied most eas-
ily to the rod- or plate-type configurations that are most likely to be relevant at
the base of the crust,23,24 while more recent work using more elaborate numeri-
cal analysis has extended the range of this treatment to include three-dimensional
cubic configurations as well.19 The quantitative results obtained so far are of an
approximate provisional nature, and much further work will be needed to improve
their precision and reliability. A first step towards such refinement has been taken
in our recent examination18 of the — apparently only moderate — adjustment of
the mobility tensor that is needed to take account of the pairing effect responsible
for the BCS-type superfluidity of the neutrons that is predicted to occur in the low
to moderate temperature range that is relevant in pulsars.
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When the appropriate value of K has been obtained, the complete determination
of the model still requires the specification of the (frame-independent) internal
static contribution (2.40). This can evidently be obtained just by adopting the
prescription (3.9), which enables us to make the simple identification µf

0
→ −µ in

the zero current limit.

4. Restoration of Frame Covariance

4.1. Chemically invariant action formula

In the crust rest frame used in Sec. 3 the “free” neutron momentum covector was
just the quantity pi that is given in (3.12), so with respect to a generic frame with
nonvanishing 3-velocity vi

c this quantity will be given by the formula

µf
i = mγijv

j
c + pi, (4.1)

in which it is to be observed that both terms are independent of the parameter
ac that specifies the chemical gauge, so that as remarked in Sec. 2.2 there is no
ambiguity in the application of the superfluidity condition to the effect that the
momentum covector (4.1) should be irrotational.

This contrasts with the chemical gauge-dependent status of the corresponding
“crust” momentum covector, which will be expressible in terms of the (chemically
gauge invariant) relative conduction current ni (2.53) by

µc
i = mγijv

j
c +

m

nc
γijn

j − nf

nc
pi, (4.2)

in which the relative conduction current n i and the corresponding momentum con-
tribution pi are gauge-invariant, but the densities nf and nc are not.

Similar remarks apply to the complete dynamical action density (2.41), which
can be given by the formula

Udyn =
1
2
ρv2

c + K
(

mvi
c pi +

1
2
p2

)
, (4.3)

in which each separate term is chemically invariant, in contrast to the status of the
separate kinetic and entrainment contributions in the decompositions (2.58), and
in the corresponding decomposition

Λmat = Λ̃int + Λ̃kin (4.4)

of the material action contribution in which the kinetic part is simply given by
Λ̃kin = Ũkin and the internal contribution will take the form

Λ̃int = Ũ ent − Ũ ins. (4.5)

This quantity needs to be distinguished from the corresponding internal energy
density defined by

Ũ int = Umat − Ũkin, (4.6)
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which will be given by

Ũ int = Ũ ent + Ũ ins. (4.7)

In particular, it can be seen from (4.5) and (4.7) that the internal contribution
Λ̃int to the Lagrangian density is not simply given by the negative of the internal
energy density Ũ int (as stated by Prix et al.3,5–7) but takes the form

Λ̃int = −Ũ int + 2Ũent. (4.8)

The tilde is used here as a reminder that the contributions thus designated have
the disadvantage of being chemically gauge-dependent. However, the terms in (4.5)
have the compensating advantage of Galilean frame invariance. It is therefore con-
venient and customary to use these entities as a starting point for the specification
of particular models, as they contain just the minimum information, in the form of
the particular equations of state, that are needed for this purpose, namely expres-
sions as a function of the relevant scalar densities nf , nc, and if necessary also nI,
for the static internal energy U ins and for the mobility coefficient K or equivalently,
via (3.19), of the entrainment density ρ̄fc for the entrainment part Ũ ent. In terms of
the relative velocity defined by (2.52) the generic variation of the frame-invariant
internal action density will evidently be expressible in the form

δΛ̃int = ρ̄fc v̄fc i δv̄i
fc − χ̃fδnf − χ̃cδnc − χ̃IδnI. (4.9)

The frame-independent chemical potentials χ̃f , χ̃c, χ̃I defined in this way determine
corresponding potentials

µ̃f = χ̃f − 1
2
mv2

f , µ̃c = χ̃c − 1
2
mv2

c , µ̃I = χ̃I, (4.10)

(of which the first two are Galilean frame-dependent) in terms of which the variation
of the complete (chemical gauge-invariant) material action density (4.4) will take
the form

δΛ̃mat = nfµ
f
iδv

i
f + ncµ

c
iδv

i
c − µ̃fδnf − µ̃cδnc − µ̃IδnI. (4.11)

To match this with the preceding expression (2.24) for the material action variation,
it can be seen that we need to make the identifications

µ̃f = −uν
f µf

ν , µ̃c = −uν
c µc

ν , (4.12)

(whereas to relate this to the terminology of Prix et al.5 one would need to make
the translations χ̃f → µf , χ̃c → µc, and Λ̃int → −E).

To match this with an alternative treatment of a kind suitable for
generalization14 to allow for solid elasticity, in which the confined constituent will
have a privileged role, the relative velocity v̄i

fc needs to be replaced in the variation
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(4.9) by the relative current ni given by (2.53), which has the advantage of being
chemically invariant. In the notation of (2.65) one thus obtains

δΛ̃int =
mf

c

nf
γij ni δnj − χfδnf − χcδnc − χIδnI, (4.13)

with

χf = χ̃f + mf
c v̄2

fc, χc = χ̃c, χI = χ̃I. (4.14)

4.2. Effective mass relations

Subject to the understanding that number density n in the preceding work16,19 is
to be interpreted as the “free” number density nf in the present terminology, the
corresponding effective mass m� will be identifiable with the effective mass per free
particle as denoted here by mf

�, which means that it will be given according to
(3.21) by

mf
� =

nf

K . (4.15)

A particularly noteworthy and previously unexpected conclusion that has emerged
from our preliminary investigations16,19 is that this effective mass can be expected
to become very large (by a factor of several hundred per cent) compared with the
ordinary neutron mass m in the middle layers of the outer crust, even when it is
only the neutrons outside the nuclei that are counted as free. It would of course be
even larger with respect to the simple “comprehensive” gauge given by ac = 1 for
which all the neutrons are counted as “free.”

Before concluding, it needs to be pointed out that whereas the definitions used
here for the effective masses are equivalent to setting

mf
� = Kffnf , mc

� = Kccnc, (4.16)

there is an alternative definition that is commonly used in the published literature
on neutron star matter.4 This alternative definition can be formulated in the present
terminology by setting

mf
� =

nf

Kff
, mc

� =
nc

Kcc
. (4.17)

The effective masses of this second kind will be given in terms of those of the first
kind by

mf
� − m =

m

mc
�

(
mf

� − m
)
, mc

� − m =
m

mf
�

(
mc

� − m
)
. (4.18)

These effective masses of the second kind are (like the first kind) either both larger
or both smaller than the ordinary mass.
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To complete the specification of the two-fluid description, the coefficient Kfc

giving rise to entrainment can be seen to be given by either of the equivalent
formulae

Kfcnc = −mf
c = m − mf

�, Kfcnf = −mc
f = m − mc

�. (4.19)

Thus Kfc will vanish, as expected, whenever the effective masses are equal to the
ordinary (protonic) baryon mass m. (As previously remarked, both effective masses
are equal to m whenever one of them is equal to m.) The alternative description in
terms of the effective masses of the second kind leads to the expressions

Kfc =
nf

m

(
1 − m

mf
�

)
=

nc

m

(
1 − m

mc
�

)
. (4.20)

The conditions (2.49) can thereby be restated in terms of effective masses in the
equivalent forms

mc
�

m
>

nc

nb
,

mf
�

m
>

nf

nb
, (4.21)

while the effective masses of the second kind must obey the equivalent inequalities

mc
�

m
<

nb

nc
,

mf
�

m
<

nb

nf
. (4.22)

4.3. Comprehensive treatment of inner crust and (outer) core

The approach developed here has been particularly designed for the treatment of
the inner crust layers above the “neutron drip” density threshold but below the
transition density at which the ionic clusters merge. It is desirable to relate this
approach to that of related work3,5,7 designed more specifically for treatment of the
homogeneous (unclustered) nuclear matter of the core region, or to be more precise
the outer core region (since the most massive neutron stars may also contain an
inner core consisting of hyperons or quark matter that would need a relativistic
treatment of kind that is beyond the scope of the present discussion).

Instead of using the more general kind of chemical basis that is useful for discus-
sion of the “neutron drip” transition, for the purpose of matching to the formalism
that is usually employed for work on the outer core it is convenient to work exclu-
sively in the “comprehensive” gauge characterized by setting ac = 1 in (2.23),
which simply means identifying the “free” neutron current nν

f with the entire neu-
tron current nν

n and identifying the “confined” baryon current nν
c with the proton

current nν
p. This allows us to obtain a treatment combining the representation of

the crust and the core in a single “comprehensive” model in which the relevant
“comprehensive” effective mass,

mn
� =

nn

K , (4.23)
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(of the first kind) for the neutrons has the advantage of having a clear physical
definition, though — as the price for this — it has the awkward property of diverging
to infinity as the density decreases to that of the “neutron drip” threshold.

The link with work on the core regime can be made more explicit by using
notation of the kind employed by Prix et al.3,5–7 in which the neutron and proton
3-momenta are given in terms of the relative 3-velocity ∆i = vi

p−vi
n by expressions

of the form

µn
i = γijm

(
vj
n + εn∆j

)
, µp

i = γijm
(
vj
p − εp∆j

)
, (4.24)

involving dimensionless parameters εn and εp that can be seen from (2.44) and
(4.24) to be definable as

εn =
m − mn

�

m
, εp =

m − mp
�

m
. (4.25)

According to an identity of the same kind as that given in (4.19), these coefficients
εn and εp will be related to each other, and to a density variable α introduced by
Prix et al.5 by

εnnn = εpnp =
2α

m
, α = −1

2
ρ̄np. (4.26)

This means, in particular, that for any given layer inside the star, the coefficients
εp and εn both have the same sign, and it also shows that we shall have |εn| < |εp|
since the density of neutrons will always exceed the number of protons, increasing
from a comparable value in the outer layers, where we shall have εn ≈ εp, to a
very much higher value nn � np, in the neutron rich core where we shall have
|εn| � |εp|. In terms of the proton fraction xp = np/nb < 1/2, it can be seen that
an inequality of the type (4.21) is equivalent to either of the restrictions

εn < xp, εp < 1 − xp, (4.27)

which evidently entails that the entrainment coefficients εn and εp must both be
less than unity.

As the effective mass mn
� (and hence also mp

�) has been found20,25 to be smaller
than the ordinary nucleon mass m in the outer core, it follows that the entrainment
coefficients εn and εp will both be positive there. This contrasts with situation in
the crust, where we expect the “comprehensive” effective mass mn

� > m to be larger
compared with m so that the coefficients εn and εp will both be negative, since we
have found16,19 that the smaller effective mass given in a “realistic” gauge just
for “conduction” neutrons with number density nf (defined as those contributing
significantly to the current) by mf

� = mn
�nf/nn will already be larger (and in some

layers much larger) than the ordinary mass m in the crust. It is to be observed that
the negative values of εn and εp will actually diverge at the “neutron drip” transition
where the “conduction” number density nf tends to zero. These considerations are
summarized in Figs. 1–4.
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Liquid core Inner crust

0

1

Fig. 1. Rough sketch of expected radial dependence of dimensionless “comprehensive” entrain-
ment coefficients εn (dashed line) and εp (solid line) in a neutron star.

Liquid core Inner crust

0

1

Fig. 2. Rough sketch of expected radial dependence of dimensionless “operational” entrainment
coefficients εf (dashed line) and εc (solid line) in a neutron star.

Liquid core Inner crust

1

0

Fig. 3. Rough sketch of expected radial dependence of “comprehensive” effective mass ratios
mn

�/m (dashed line) and mp
�/m (solid line) in a neutron star.
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Liquid core Inner crust

1

0

Fig. 4. Rough sketch of expected radial dependence of “operational” effective mass ratios, mf
�/m

(dashed line) and mc
�/m (solid line), in a neutron star.

The total material energy density (as locally defined without allowance for grav-
ity) will be expressible in the “comprehensive” treatment by

Umat = Ũkin + Ũ int, Ũ int = Ũ ins + Ũ ent, (4.28)

with the kinetic contribution given by the usual formula

Ũkin =
1
2
m

(
nnv2

n + npv2
p

)
, (4.29)

while from Eqs. (2.60), (2.65), and (4.25) it can be seen that the two-fluid equation
of state will be expressible in terms of a pair of 3-variable functions Ũ ins{nI, nn, np}
and α{nI, nn, np} in terms of the quantity that has been loosely referred by Prix
et al.3,5–7 to as the “internal energy density” — but that is actually the negative
of the internal action density — will be given by

−Λ̃int = Ũ ins + α ∆2, (4.30)

whereas the true internal energy density will be given by

Ũ int = Ũ ins − α ∆2. (4.31)

In the high-density core region the static energy contribution Ũ ins will cease to
have any dependence on the ionic number density nI, not because of any tendency
of nI to vanish on the lower boundary of the crust (where it merely ceases to be
well defined) but rather because the corresponding clustering energy coefficient µI

will vanish there, so that the value of nI no longer matters.
As depicted in Fig. 1, the entrainment coefficients between the neutron and

proton fluids in the core of a neutron star are expected to be very small compared
with the previously neglected entrainment coefficients in the inner crust layers. This
strong entrainment in the inner crust may have significant effects on the dynam-
ical evolution of the star. For instance, as recently shown by Andersson et al.,26

sufficiently large negative values of the entrainment coefficients εn and εp could
trigger a Kelvin–Helmholtz instability in the fluid mixture which might be at the
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origin of observed pulsar glitches. The development of gravitational wave detec-
tors could provide valuable constraints upon the internal structure of a neutron
star by asteroseismology.27 However, a thorough understanding of the oscillation
modes of a neutron star is required in order to extract useful information from the
gravitational wave data. Hydrodynamical simulations of neutron star cores indicate
that these oscillation modes are very sensitive to entrainment.27 The inner crust,
where the two fluids are expected to be the most strongly coupled, should there-
fore be given careful consideration in neutron star dynamical studies. As shown in
this paper, a simple neutron star two-fluid model allowing for the presence of the
crust (but neglecting the stress anisotropy), can be easily implemented by suitable
adjustments of the corresponding entrainment coefficients.

Acknowledgments

This work was supported by the LEA Astro-PF program. Pawel Haensel was sup-
ported by the KBN Grant No. 1-P03D-008-27. N. Chamel was supported by the
Lavoisier program of the French Ministry of Foreign Affairs.

References

1. M. Ruderman, Neutron star crustal plate tectonics: Magnetic dipole evolution in
millisecond pulsars and low-mass X-ray binaries, Astroph. J. 366, 261–269 (1991).

2. L. Lindblom and G. Mendell, R modes in superfluid neutron stars, Phys. Rev. D 61,
104003 (2000) [gr-qc/9909084].

3. R. Prix, G. L. Comer and N. Andersson, Inertial modes of non-stratified superfluid
neutron stars, Mon. Not. R. Astron. Soc. 348, 652–662 (2004) [astro-ph/0308507].

4. G. Mendell, Superfluid hydrodynamics in rotating neutron stars. I Nondissipative
equations, Astroph. J. 380, 515–529 (1991).

5. R. Prix, G. L. Comer and N. Andersson, Slowly rotating superfluid Newtonian neu-
tron star model with entrainment, Astron. Astrophys. 381, 178–196 (2002) [astro-
ph/0107176].

6. R. Prix and M. Rieutord, Adiabatic oscillations of non-rotating superfluid neutron
stars, Astron. Astrophys. 393, 949–964 (2002) [astro-ph/0204520].

7. R. Prix, Variational description of multifluid hydrodynamics: Uncharged fluids, Phys.
Rev. D 69, 043001 (2004) [physics/0209024].

8. N. Andersson, G. L. Comer and K. Grosart, Lagrangian perturbation theory of non-
relativistic rotating superfluid stars, Mon. Not. R. Astron. Soc. 355, 918–928 (2004)
[astro-ph/0402640].

9. B. Carter and N. Chamel, Covariant analysis of Newtonian multifluid models for
neutron stars: I Milne–Cartan structure and variational formulation, Int. J. Mod.
Phys. D 13, 291–325 (2004) [astro-ph/0305186].

10. B. Carter and N. Chamel, Covariant analysis of Newtonian multifluid models for
neutron stars: II Stress–energy tensors and virial theorems, Int. J. Mod. Phys. D 14,
717–748 (2005) [astro-ph/0312414].

11. B. Carter and N. Chamel, Covariant analysis of Newtonian multifluid models for
neutron stars: III Transvective, viscous, and superfluid drag dissipation, Int. J. Mod.
Phys. D 14, 749–774 (2005) [astro-ph/0410660].



July 21, 2006 16:55 WSPC/142-IJMPD 00850

Entrainment Coefficient and Effective Mass for Conduction Neutrons 803

12. D. Langlois, D. Sedrakian and B. Carter, Differential rotation of relativistic super-
fluid in neutron stars, Mon. Not. R. Astron. Soc. 297, 1198–1201 (1998) [astro-
ph/9711042].

13. B. Carter, E. Chachoua and N. Chamel, Covariant Newtonian and relativistic dynam-
ics of (magneto)-elastic solid model for neutron star crust, Gen. Relativ. Gravit. 38,
83–119 (2006) [gr-qc/0507006].

14. B. Carter and E. Chachoua, Newtonian mechanics of neutron superfluid in elastic star
crust, to appear in Int. J. Mod. Phys. D (2006) [astro-ph/0601658].

15. A. F. Andreev and E. P. Bashkin, Three velocity hydrodynamics of superfluid solu-
tions, Sov. Phys. JETP 42, 164–167 (1975).

16. B. Carter, N. Chamel and P. Haensel, Entrainment coefficient and effective mass for
conduction neutrons in neutron star crust: Simple microscopic models, Nucl. Phys. A
748, 675–697 (2005) [nucl-th/0402057].

17. K. Oyamatsu and Y. Yamada, Shell energies of nonspherical nuclei in the inner crust
of a neutron star, Nucl. Phys. A 578, 184–203 (1994).

18. B. Carter, N. Chamel and P. Haensel, Effect of BCS pairing on entrainment in neutron
superfluid current in neutron star crust, Nucl. Phys. A 759, 441–464 (2005) [astro-
ph/0406228].

19. N. Chamel, Band structure effects for dripped neutrons in neutron star crust, Nucl.
Phys. A 747, 109–128 (2005) [nucl-th/0405003].

20. G. L. Comer and R. Joynt, A relativistic mean field model for entrainment in general
relativistic superfluid neutron stars, Phys. Rev. D 68, 023002 (2003) [gr-qc/0212083].

21. B. Carter, D. Sedrakian and D. Langlois, Centrifugal buoyancy as a mechanism for
neutron star glitches, Astron. Astrophys. 361, 795–802 (2000) [astro-ph/0004121].

22. B. Carter and N. Chamel, Effect of entrainment on stress and pulsar glitches in
neutron star crust, preprint [astro-ph/0503044].

23. C. J. Pethick and D. G. Ravenhall, Matter at large neutron excess and the physics of
neutron star crusts, Annu. Rev. Part. Sci. 45, 429–484 (1995).

24. P. Haensel, Neutron star crusts, in Physics of Neutron Star Interiors, eds. D. Blaschke,
N. K. Glendenning and A. Sedrakian, Lecture Notes in Physics, Vol. 578 (Springer,
2001), pp. 127–174.

25. M. Borumand, R. Joynt and W. Kluzniak, Superfluid densities in neutron star matter,
Phys. Rev. C 54(5), 2745–2750 (1996).

26. N. Andersson, G. L. Comer and R. Prix, The superfluid two-stream instability, Mon.
Not. R. Astron. Soc. 354, 101–110 (2004).

27. N. Andersson, Topical review: Gravitational waves from instabilities in relativistic
stars, Class. Quant. Grav. 20, R105–R144 (2003) [astro-ph/0211057].




