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Abstract

The relative current densityni of “conduction” neutrons in a neutron star crust beyond the neu
drip threshold can be expected to be related to the corresponding particle momentum covectpi by
a linear relation of the formni = Kij pj in terms of a physically well-defined mobility tensorKij .
This result is describable as an “entrainment” whose effect—wherever the crust lattice is isotr
will simply be to change the ordinary neutron massm to a “macroscopic” effective massm� such that
in terms of the relevant number densityn of unconfined neutrons we shall haveKij = (n/m�)γ

ij .
In a preceding work based on a independent particle treatment beyond the Wigner–Seitz a
mation, using Bloch type boundary conditions to obtain the distribution of energyEk and associated
group velocityvi

k
= ∂Ek/∂h̄ki as a function of wave vectorki , it was shown that the mobility ten

sor would be proportional to a phase space volume integralKij ∝ ∫
d3k vi

k
v
j
k
δ{Ek − µ}, where

µ is the Fermi energy. Using the approach due to Bogoliubov, it is shown here that the
of BCS pairing with a superfluid energy gap∆F and corresponding quasiparticle energy funct

€k =
√

(Ek − µ)2 + ∆2
F will just be to replace the Dirac distributional integrand by the smoo

distribution in the formulaKij ∝ ∫
d3k vi

k
v
j
k
∆2

F/€3
k . It is also shown how the pairing condens

tion gives rise to superfluidity in the technical sense of providing (meta) stability against re
perturbations for a current that is not too strong (its momentumpi must be small enough to giv
2|piv

i
k
| < €2

k/|Ek − µ| for all modes). It is concluded that the prediction of a very large effec
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mass enhancement in the middle layers of the star crust will not be significantly effected
pairing mechanism.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

A two fluid model of neutron star cores, of the kind that is commonly used in hydr
namical simulations has been developed in the past, assuming a neutron–proton–
composition and using a nonrelativistic treatment, by the work of many authors [1,
particular, as explained by Borumand et al. [3], appropriate expressions have been o
for the relevant entrainment coefficients, relating the momentum of the neutron fluid
particle current of both neutrons and protons, in terms of the Landau parameters
Fermi liquid theory. More recently, it has been shown by Comer et al. [4,5] how th
quired entrainment coefficients, and the corresponding effective masses for the ne
and the protons, can be evaluated in a relativistic treatment—such as is appropr
deeper layers at densities substantially above the value (of about 1014 g/cm3) that char-
acterises ordinary nuclear matter—using a relativisticσ–ω mean field model. The salien
conclusion to be drawn from all this work is that in these homogeneous fluid laye
effective mass of the neutron will be significantly but not enormously reduced (by se
tens of percent) below its ordinary bare mass value.

The present article is part of a newer program of work [6,7] concerned with the
viously unstudied problem of evaluating what turns out to be a much more subs
effective mass modification that is obtained from the corresponding entrainment c
cients in the crust at subnuclear densities, above the neutron drip threshold (at abo11

g/cm3). In these layers, relativistic corrections are insignificant but the issue is compli
by the microscopic inhomogeneity of the medium, in which some neutrons can stil
freely but protons are confined to atomic nuclei. As in the outer neutron star crust wh
nucleons are bound, the nuclei of the inner crust will be liquid at high temperatures b
be held by Coulomb forces in a crystalline solid lattice in the relatively low temper
range (well below 108 degrees Kelvin) observed in ordinary isolated neutron stars, w
according to theoretical considerations (see, e.g., [8]) should be attained within a
hundred years after the birth of the star. Such a low temperature regime will be main
even in a binary system involving accretion provided its rate does not exceed the t
order of magnitude∼10−10 M�/yr [9]. It has long been generally recognised [10] tha
such low temperatures (indeed all the way up to 109 degrees Kelvin or more [11]) the ne
trons will form a BCS type condensate characterised by a superfluid energy gap, an
the reasons discussed in the penultimate section of this article—will therefore be a
flow through the lattice for a macroscopically long time [12], without resistive or visc
dissipation. The evaluation of the entrainment coefficients for such a superfluid flow
particular astrophysical interest, because relative motion of the effectively free “co
tion” neutrons through the inner crust lattice is believed to be an essential element
mechanism responsible for observed pulsar frequency “glitches”.

In order to obtain the quantitative information that is needed, a first step has be

development by the present authors of a microscopic derivation [6] of an appropriate two
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fluid model for the inner crust regime, on the basis of a simplified nonrelativistic des
tion of the underlying nuclear physics in which (as in the previously cited work [3,5
the higher density regimes pertaining to deeper layers of the star) thermal correctio
the effects of superfluid pairing were neglected. Recent numerical work [7] has show
this treatment implies an enormous enhancement by the entrainment of the effectiv
of the free neutrons in the middle layers of the inner crust (a result that contrasts w
rather moderate diminution predicted for the effective neutron mass in the deeper co
ers). The purpose of the present work is to evaluate the adjustments—which turn ou
small—that will result from allowance for the superfluid pairing of the neutrons.

Until now, quantum theoretical analysis of neutron superfluidity has mainly con
trated on static configurations (in either infinite medium [13] or inhomogeneous
tems [14–16]), meaning states for which no current is actually flowing relative to c
Even at densities substantially beyond the neutron drip threshold it should still be
ble to obtain a reasonably accurate description for the static case by using the so
Wigner–Seitz approximation that treats the neighbourhood of each ionic nucleus a
were isolated in a sphere whose diameter is determined by the nearest neighbour d
However for the treatment of more general—stationary but nonstatic—configuratio
volving relative conduction currents it is absolutely necessary to use a more re
description in which the artificial Wigner–Seitz type boundary conditions are replac
the natural Bloch type periodicity conditions that would be desirable for higher acc
even in the static case.

The use of appropriate Bloch type periodicity conditions is routine in terrestrial
state physics [17], but has so far been applied to neutron star matter only in a sim
zero temperature independent particle treatment [6,7] (of the kind applicable well belo
Fermi temperature, but most appropriate for a young neutrons star that has not ye
below the critical temperature for the onset of superfluidity) for which the neutron
considered to move as independent particles without allowance for the pairing intera
responsible for the superfluid energy gap that (in cool mature neutron stars) allow
currents to persist.

A simplified treatment of this kind has been used to show that the middle layer
neutron star crust will be characterised by a very low value for the relevant mobility t
in the formulani = Kijpj for the currentni = nv̄i of unbound neutrons (which will b
present above the “drip” density of the order of 1011 g/cm3) with number densityn, mean
velocity v̄i and momentum per neutronpi . Throughout this paper summation is understo
over repeated covariant and contravariant coordinate Latin indices, for instanceKijpj ≡∑

j Kijpj . In the independent particle treatment, the mobility tensor was shown [
be given by a volume integral over the space of Bloch momentum covectorski that is
expressible in terms of a Dirac distribution with support confined to the Fermi surfa
where the relevant energy functionEkα with a band indexα, is equal to the chemica
potentialµ—in the form

Kij = 2 ∑∫
vi v

j
δ{E − µ}d3k (1)
(2π)3
α

kα kα kα
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(in which, as throughout this work, we use braces—as distinct from ordinary brack
for functional dependence, in order to avoid possibly confusion with simple multiplica
where the relevant group velocity distribution is given by the usual formula

vi
kα = 1

h̄

∂Ekα

∂ki

. (2)

The main purpose of this article is to show how the preceding independent pa
treatment can be generalised to allow for BCS type pairing using an approach of th
pioneered by Bogoliubov. Since the relevant temperature range (substantially belo8

degrees Kelvin) is very small compared with the critical value (of the order of 109 degrees
Kelvin) for the pairing condensation it will be justifiable for us to continue to use the
temperature limit,T = 0, in which thermal correction effects are entirely ignored. On
the main motivations for this work is to check the robustness of the conclusions ob
from the simple treatment described above, particularly the prediction of a very low
for the mobility tensor, which is interpretable as meaning that the corresponding eff
massm� = n/3Ki

i will become very large compared with the ordinary neutron mass.
Our conclusion is that as a first step towards a more accurate treatment, in ca

which the superfluid pairing can be characterised just by a gap parameter∆F the relevant
integral over the Fermi surface will need to be replaced by a phase space volume i
given in terms of the quasiparticle energy

€kα =
√

(Ekα − µ)2 + ∆2
F (3)

by the new formula

Kij = 2

(2π)3

∑
α

∫
vi
kαv

j
kα

∆2
F

€kα

d3k, (4)

in which the expression for the group velocityvi
kα is the same as in the absence of

pairing gap. It is the diminution of this group velocity that is responsible for the enha
ment of the effective mass, which on average should therefore not be greatly affec
the phase space smearing effect produced by the superfluid pairing. This comes fr
fact that the expectation value in the superfluid phase of one particle quantities, nam
particle current density in the present work, are not very different from their normal
superfluid) value as shown by Leggett [18] in the context of superfluid helium 3.

Although the effect of the pairing is not so important for the evaluation of the effe
mass, it is of course important for the property of superfluidity itself. Much of the con
porary literature on the underlying mechanisms for “superconductivity” in astrophy
contexts deals only with purely static configurations, in which the essential question
cerns the existence of a condensed state characterised by a finite energy gap. A se
purpose of this article is to go back to the question of superconductivity in the strict te
cal sense, which refers not to static configurations but to stationary configurations inv
the relevant motion of a current of some kind—electric in ordinary laboratory metals
neutronic in the case of interest here. The essential issue is that of the (meta) stab
such a current against (small) perturbations of the kind that in the “normal” case w

produce resistive damping. The original defining property of a superconductor is that it
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should be able to support a current that will be characterised by such metastabilit
vided it does not exceed some finite critical value, beyond which “normal” dissipation
of course set in. It will be confirmed in the penultimate section of this article that w
the framework of the simple theoretical model used for the present work this condit
superconductivity will indeed be satisfied, with a critical maximum current value th
estimated to be safely large compared with what is required for the relevant applicat
astrophysical phenomena such as pulsar glitches.

2. Hamiltonian for the independent particle limit

The idea is to start on the basis of a second quantised formalism in terms of
fermionic field annihilation and creation operatorsψ̂ and ψ̂† depending on space pos
tion coordinatesxi in a unit volume sample, and on a spin variableσ taking values↑ and
↓ subject to anticommutation rules of the usual form[

ψ̂σ {r}, ψ̂σ ′ {r′}]+ = 0,
[
ψ̂†

σ {r}, ψ̂†
σ ′ {r′}]+ = 0, (5)[

ψ̂†
σ {r}, ψ̂σ ′ {r′}]+ = δσσ ′δ{r, r′}, (6)

using a quadratic Hamiltonian operator of the form

Ĥ = Ĥind + Ĥint, Ĥind = Ĥkin + Ĥpot, (7)

in which the interaction termĤint will be absent in the independent particle limit cor
sponding to the kind of model used [6] in our preceding first quantised treatment.

In this independent particle limit, only the kinetic and potential contributions are pr
and will be assumed to be given (neglecting possible spin dependence for simplic
integrals over the unit volume sample under consideration of the form

Ĥkin =
∫

d3r Ĥkin{r}, Ĥkin{r} =
∑
σ

ψ̂†
σ {r}Hkinψ̂σ {r}, (8)

Ĥpot =
∫

d3r Ĥpot{r}, Ĥpot{r} = V {r}
∑
σ

ψ̂†
σ {r}ψ̂σ {r}, (9)

whereHkin is a self adjoint differential operator in the category specified in terms
gauge covectorai by an expression of the familiar form

Ha = −γ ij (∇i + iai)
1

2m⊕{r} (∇i + iai) (10)

in which γ ij is the Euclidean space metric andm⊕{r} is interpretable as a microscop
effective mass, which is usually found to have smaller values inside crustal nucle
The covector with componentsai is a gauge field allowing for the possibility of adjustme
of the phases of the field operatorsψ̂σ {r}. In applications to particles with nonzero elect
charge (e say) such as the electrons in an ordinary terrestrial superconductor or the p
in the deeper layers of a neutron star, the presence of such a field (taking the formai = eAi )

would be necessary for the treatment of magnetic effects, but in the uncharged case of the
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crust neutrons with which we are concerned here it will always be possible to work
standard gauge for which this covector is simply set to zero,ai = 0, which means that w
simply take

Hkin = H0. (11)

The potentialV {r} and the microscopic effective massm⊕{r} (as those deduced from
contact two body interactions of the Skyrme type in the Hartree–Fock approximatio
supposed to represent the averaged effect on the neutrons of the nuclear medium
particular of the ionic lattice. A periodic crystalline type lattice will be assumed, w
implies that these functions should be invariant with respect to any lattice translatio
tors

V
{
r + �aea

} = V {r}, m⊕{
r + �aea

} = m⊕{r} (12)

for any triad of integers�a (a = 1,2,3) in which the lattice basis vectorsea may be inter-
preted as representing the interionic spacing in the solid case that will be relevant
low temperature, but should in principle be taken to be much larger (so as to gene
giant cell interpretable as a typical mesoscopic average over a locally disordered c
ration) for applications above the relevant melting temperature, at which it is to be exp
that (unlike the weaker electron pairing mechanism in ordinary terrestrial supercondu
the superfluid neutron pairing mechanism will still be intact.

The mass functionm⊕{r} in the specification of the kinetic contribution to the indep
dent Hamiltonian will also be involved in the specification of the corresponding ne
current density operators, which will be given, for each value of the spin variableσ , by

n̂i
σ {r} = h̄

2im⊕{r}γ
ij
(
ψ̂†

σ {r}∇j ψ̂σ {r} − (∇j ψ̂
†
σ

)
ψ̂σ {r}). (13)

One of the main objectives of the present work is to obtain a practical way of evalu
the mean value of the total current, as given by the space averaged operator

ˆ̄ni =
∑
σ

ˆ̄ni
σ , ˆ̄ni

σ =
∫

d3r n̂i
σ , (14)

as a function of the associated momentum in a stationary state that is nonstat
therefore nonisotropic, since the mean current will characterise a preferred directio
uniform of a mesoscopic volume, meaning one that is large compared with the inte
spacing but small compared with the macroscopic lengthscales characterising the st
thickness or even the intervortex separation.

It is to be noted for future reference that this current can be used to express the
ment that will be required in cases when it turns out to be more convenient to work
the gauge adjusted operatorHa rather thanH0 in the kinetic contribution (11): it can b
seen that this kinetic contribution will be given in the smalla limit by

Ĥkin + ai
ˆ̄ni =

∑
σ

∫
d3r ψ̂†

σ {r}Haψ̂σ {r} +O
{|a|2}, (15)

subject to the usual assumption that we are using periodic boundary conditions to

of a boundary term produced by an integration by parts using Green’s theorem.
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3. Representation by Bloch states

Subject to the usual Bloch type boundary conditions for a mesoscopic material s
of parallelepiped form—with a unit volume that is taken to be very large compared
the elementary lattice cells under consideration—the independent particle Hamiltonia
determine a complete orthonormal set of single particle statesϕkα{r}, labelled by a wave
covectorki taking discrete values on a fine mesh inside the first Brillouin zone and a
indexα, satisfying the Floquet–Bloch theorem [17]

ϕkα{r} = ukα{r}eik·r, (16)

using the abbreviationk · r = kix
i , whereukα{r} satisfies the ordinary lattice periodici

conditions

ukα

{
r + �aea

} = ukα{r}. (17)

These wave functions are normalised as follows (using∗ to indicate complex conjugation∫
d3r ϕ∗

kα{r}ϕlβ{r} = δklδαβ . (18)

Setting the Bloch wave vectorki in place ofai in the definition (10) the eigenvalue equati
can be usefully rewritten in terms of the ordinarily periodic functionsukα as

(Hk + V )ukα{r} = Ekαukα{r}. (19)

From the spin independence of the potential (by neglecting spin–orbit coupling term
phases can be chosen in such a way that we shall have

ϕ∗
kα{r} = ϕ−kα{r}, u∗

kα{r} = u−kα{r}. (20)

These Bloch states may be employed in the usual way as a basis for the speci
of corresponding position independent annihilation and creation operators,ĉσαk andĉ

†
σkα ,

subject to anticommutation relations of the standard form

[ĉσ kα, ĉσ ′lβ ]+ = 0,
[
ĉ

†
σkα, ĉ

†
σ ′lβ

]
+ = 0, (21)[

ĉ
†
σkα, ĉσ ′lβ

]
+ = δσσ ′δklδαβ, (22)

in terms of which the original position dependent annihilation and creation operator
be given by

ψ̂σ {r} =
∑
k,α

ϕkα{r}ĉσ kα, ψ̂†
σ {r} =

∑
k,α

ϕ∗
kα{r}ĉ†

σkα. (23)

It is evident just from the orthonormality conditions (18) that the spin dependent nu
density operator defined by

n̂σ {r} = ψ̂†
σ {r}ψ̂σ {r} (24)

will have a space integral∫
3
ˆ̄nσ = d r n̂σ {r}, (25)
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ˆ̄nσ =
∑
k,α

n̂σkα, n̂σkα = ĉ
†
σkαĉσkα. (26)

It can similarly be seen from the defining conditions (23) that integrated value of the
pendent particle contribution,

Ĥind =
∫

d3r Ĥind{r}, Ĥind{r} = Ĥkin{r} + Ĥpot{r}, (27)

which is interpretable in the absence of the interaction contribution as the total e
operator, will be expressible in standard form as

Ĥind =
∑
σ,k,α

Eαkn̂σkα, (28)

wheren̂σkα is the Bloch wave vector dependent particle number density operator giv
(26).

To get an analogous formula for the mean current (over the unit volume sample
consideration) as given by the operator (14), we take its expectation value

〈| ˆ̄ni
σ |〉 =

∫
d3r 〈|n̂i

σ {r}|〉, (29)

for a state|〉 satisfying the simplicity condition that except for the diagonal contr
tions characterised byσ ′ = σ , li = ki and α = β the contributions of the expectatio
values〈|ĉ†

σkαĉσ ′lβ |〉 will vanish—or be negligible to the order of approximation und
consideration—it can be seen that we shall obtain the formula

〈| ˆ̄ni
σ |〉 =

∑
k,α

〈|n̂σkα|〉vi
kα, (30)

in which the relevant velocity will be given by

vi
kα =

∫
d3r

h̄

2im⊕{r}γ
ij
(
ϕ∗

kα{r}∇j ϕkα{r} − ϕkα{r}∇jϕ
∗
kα{r}). (31)

This expression (31) for the velocity vectorvi
kα can easily be shown to be mathematica

equivalent to the well known, albeit less intuitively obvious, group velocity formula th
given in terms of the single particle energy introduced in (19) by (2).

4. Characterisation of conducting reference state

The (zero temperature) states in which we are interested are those that minim
expected total energy〈|Ĥ |〉 subject not only to the usual constraint that there should
fixed given value of the corresponding total expected particle number

〈| ˆ̄n|〉 =
∑

〈| ˆ̄n |〉, (32)

σ

σ
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but also, since we are concerned with nonstatic—conducting—stationary configur
to the requirement that there should also be a fixed given value of the expected tota

〈| ˆ̄ni |〉 =
∑
σ

〈| ˆ̄ni
σ |〉, (33)

of the current defined by (14).
Imposing these constraints by the introduction of corresponding Lagrange multi

µ andpi , the problem will effectively be that of unconstrained minimisation of the com
nation

〈|Ĥ ′{p}|〉 = 〈|Ĥ |〉 − µ〈| ˆ̄n|〉 − pi〈| ˆ̄ni |〉, (34)

in which we introduce the notation

Ĥ ′{p} = Ĥ ′ − pi
ˆ̄ni, Ĥ ′ = Ĥ − µ ˆ̄n. (35)

In the absence of the pair coupling term̂Hint , the quantity to be minimised reduces to t
form 〈|Ĥ ′

ind{p}|〉 with

Ĥ ′
ind{p} = Ĥ ′

ind − pi
ˆ̄ni, Ĥ ′

ind = Ĥind − µ ˆ̄n. (36)

It can be seen from (11) and (15) that, for a small value,

pi = h̄qi, (37)

of the momentum, its effect will be given to first order in the magnitude|q| of the corre-
sponding wave number covector just by substituting the gauge adjusted operatorH−q in
place ofH0 in the relevant differential formulae. Thus, in particular, it can be seen
the appropriate modification of the eigenvalue equation (19) for the required replace
E{p}kα and u{p}kα of Ekα and ukα will be just the substitution ofHk−q for Hk , which
evidently means that to this first order of accuracy we shall have

E{p}kα = E(k−q)α, (38)

and

u{p}kα = u(k−q)α. (39)

One thereby obtains the formula

ϕ{p}kα{r} = eiq·rϕ(k−q)α{r}, (40)

for the corresponding modification of the single particle states (16), which in turn, b
analogue of (23), determine correspondingly adjusted annihilation and creation ope
ĉ{p}σkα andĉ

†
{p}σkα , in terms of which (26) can be rewritten in the equivalent form

ˆ̄nσ =
∑
k,α

n̂{p}σkα, n̂{p}σkα = ĉ
†
{p}σkαĉ{p}σkα. (41)

It can thus be seen that, as the analogue of (28), the effective HamiltonianĤ ′{p}ind
will be

given by the formula

Ĥ ′{p} =
∑

E ′{p}kαn̂{p}kα, (42)

ind

σ,k,α
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E ′{p}kα = E ′
(k−q)α, (43)

to the linear order accuracy inp with which we are working. At this order, it can be se
from (2) that (43) may be rewritten as

E ′{p}kα = E ′
kα − piv

i
kα, E ′

kα = Ekα − µ. (44)

The expectation value of the quantity given by (42) will evidently be minimised
reference state vector|〉 = |{µ,p}〉 that is chosen (as a function of the multipliersµ andpi )
in such a way that the expectation〈{µ,p}|n̂{p}σkα|{µ,p}〉 has its maximum value, namely
wheneverE ′{p}kα is negative, and its minimum value, namely zero, wheneverE ′{p}kα is posi-
tive. It can thus be seen from (43) that the effect of the current will consist just of a un
shift of the distribution in momentum space by an amount given by the infinitesima
mentum covectorpi . Such a state is characterised by the conditions

n̂{p}σkα|{µ,p}〉 = n{p}σkα|{µ,p}〉 (45)

with the eigenvalues given as a Heaviside distribution by

n{p}σkα = ϑ{−E ′{p}kα}. (46)

It can be seen that this state|{µ,p}〉 satisfies the condition for applicability of the an
logue of (30), and hence that the expected mean current value

n̄i
σ = 〈{µ,p}| ˆ̄ni

σ |{µ,p}〉 (47)

will be given (in accordance with our previous evaluation [6] in a first quantised fra
work) by

n̄i
σ =

∑
k,α

vi
kα ϑ{−E ′{p}kα}. (48)

In the linearised weak current limit with which we are working, it can be seen from (2
(44) that this will be expressible to first order in terms of the static limit value,

nσkα = ϑ{µ − Ekα}, (49)

of the distribution (46) as

n̄i
σ = pj

∑
k,α

nσkα

h̄2

∂2Ekα

∂ki∂kj

. (50)

5. Bogoliubov treatment of pairing

Up to this point what has been done in the present article is just to translate the
of our preceding article [6] from first quantised to second quantised formalism. The
vation for this translation is that a second quantised treatment is indispensable for th
step, which is to go beyond the independent particle model used in the preceding w

including allowance for pairing interactions.
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In the inner crust in which we are concerned here, dripped neutrons are expe
be paired in spin singlet states [10], as the usual Cooper pairs of electrons in ter
superconductors. A standard way of allowing for pairing interaction in a mean field m
(assuming for simplicity a contact two body interaction as it is the case for conven
superconductor [19] and a common practice in nuclear physics [20]) is thus to ta
interaction contribution in (7) to have the form

Ĥint{r} = ∆{r}ψ̂†
↑{r}ψ̂†

↓{r} + ∆∗{r}ψ̂↓{r}ψ̂↑{r}, (51)

where∆{r} is a position dependent complex potential that, in a “self consistent” m
should be expressible in terms of the abnormal density expectation value〈|ψ̂↓{r}ψ̂↑{r}|〉
in the relevant reference state|〉.

The mean complex phase of the function∆{r} is subject to an indeterminacy that c
be resolved by fixing the phase in the specification of the wave operators. In a static c
uration one would expect that this coupling potential∆{r} would share the ordinary lattic
periodicity property (12) and moreover that the phase should be adjustable in such
as to ensure that∆ becomes real.

Instead of using the representation (16) in terms of the simple Bloch wave fun
ϕkα{r}, in the approach introduced by Bogoliubov one seeks a more general repre
tion whereby the single component Bloch waves are replaced by two component
functions with componentsϕ0

kα{r} andϕ1
kα{r} that are characterised with respect to cor

sponding ordinarily periodic functionsu0
kα{r}, andu1

kα{r} by(
ϕ0

kα{r}
ϕ1

kα{r}
)

= ei k·r
(

u0
kα{r}

u1
kα{r}

)
. (52)

These functions are used for replacing the original representation (16) by a mixed pa
hole representation involving a new set of position independent quasiparticle annih
and creation operatorŝγσk andγ̂

†
σk in terms of which we shall have

ψ̂↑{r} =
∑
k,α

(
ϕ0

kα{r}γ̂↑kα − ϕ1∗
kα{r}γ̂ †

↓kα

)
, (53)

and

ψ̂↓{r} =
∑

k

(
ϕ0

kα{r}γ̂↓kα + ϕ1∗
kα{r}γ̂ †

↑kα

)
, (54)

where the new operators satisfy anticommutation relations of the standard form

[γ̂σkα, γ̂σ ′lβ ]+ = 0,
[
γ̂

†
σkα, γ̂

†
σ ′lβ

]
+ = 0, (55)[

γ̂
†
σkα, γ̂σ ′lβ

]
+ = δσσ ′δklδαβ . (56)

As a result, consistency with (5) and (6) entails the relations:[
ψ̂

†
↑{r}, ψ̂↑{r′}]+ = δ{r, r′} =

∑
k

ϕ0∗
kα{r}ϕ0

kβ{r′} + ϕ1∗
kα{r′}ϕ1

kα{r}, (57)

[
ψ̂

†{r}, ψ̂†{r′}] = 0=
∑

ϕ1 {r}ϕ0∗{r′} − ϕ0∗{r}ϕ1 {r′}. (58)
↓ ↑ +
k

kα kα kα kα
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The purpose of such a Bogoliubov ansatz is to enable us to choose the new fu
ϕ0

kα{r} andϕ1
kα{r} in such a way as to simplify the expression for the total effective Ha

tonian, which will be given for a static configuration by

Ĥ ′ =
∫

d3r Ĥ′{r}, (59)

with

Ĥ′{r} =
∑
σ

ψ̂†
σ{r}H′

indψ̂σ {r} + ∆{r}ψ̂†
↑{r}ψ̂†

↓{r} + ∆∗{r}ψ̂↓{r}ψ̂↑{r}, (60)

in which the independent particle contribution is given by

H′
ind = Hind − µ, (61)

where, as before,µ is a Lagrange multiplier, whose purpose when we apply the varia
principle, is to impose the constraint that the expectation of the total integrated nu
density should be held fixed. It is to be remarked that in the presence of the pairing
action term, the number operatorˆ̄n will no longer exactly commute with the Hamiltonia
which implies that the state that minimises the expectation of the effective Hamilt
obtained in this way will not be an exact eigenstate either of the particle number or
energy.

The simplification of the Hamiltonian (60) can be achieved by taking the func
ϕ0

kα{r} andϕ1
kα{r} to be solutions of the coupled set of differential equations (known a

Bogoliubov–de Gennes equations in the condensed matter field [21]) given by(
H′

ind ∆

∆∗ −H′∗
ind

)(
ϕ0

kα

ϕ1
kα

)
=€kα

(
ϕ0

kα

ϕ1
kα

)
, (62)

in which the eigenvalue€kα is what will be seen to be interpretable as the relevant q
siparticle energy. This system can be written more explicitly in terms of the ordin
periodic functionsu0

kα{r}, andu1
kα{r} introduced in (52) as(

Hk + V ′ ∆

∆∗ −H∗
k − V ′

)(
u0

kα

u1
kα

)
=€kα

(
u0

kα

u1
kα

)
, (63)

using the notation of (61), where

V ′ = V − µ. (64)

The foregoing specification is incomplete, because the condition of satisfying (62
evidently be preserved by interchanges of the form

ϕ1∗
kα ↔ ϕ0−kα, €kα ↔ −€kα, (65)

but this ambiguity is resolved by adoption of the usual postulate that the eigenvalu
positive,

€kα > 0. (66)

To fix the normalisation of the solutions, which will automatically satisfy the integral r
tions expressible—restoring the explicit reference to the position dependence—as∫

3 1 0

∫
3 0 1
d r ϕkα{r}ϕlβ{r} = d r ϕkα{r}ϕlβ{r}, (67)
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the amplitude of the (automatically mutually orthogonal) solutions is chosen so that∫
d3r

(
ϕ0∗

kα{r}ϕ0
lβ{r} + ϕ1∗

kα{r}ϕ1
lβ{r}) = δklδαβ . (68)

The foregoing ansatz eliminates all the undesirable terms, reducing the effective H
tonian operator to the remarkably simple form

Ĥ ′ =
∑
σ,k,α

€kα

(
γ̂

†
σkαγ̂σkα − sin2θkα

) =
∑
σ,k α

€kα

(
cos2θkα − γ̂σkαγ̂

†
σkα

)
, (69)

in whichθkα is the relevant Bogoliubov angle, as defined, for each value of the wavenu
covectorki and band indexα by

cos2 θkα =
∫

d3r ϕ0∗
kα{r}ϕ0

kα{r}, sin2 θkα =
∫

d3r ϕ1∗
kα{r}ϕ1

kα{r}. (70)

By minimisation of the expectation of the operator (69) one obtains the required
densate reference state|〉 = |{µ}〉, which is characterised by the condition

γ̂σkα|{µ}〉 = 0, (71)

expressing absence of all the quasiparticles created by the operatorsγ̂
†
σkα .

The quasiparticle operators can be written in terms of the particle operators reme
ing equation (23) and the orthonormality condition (18) as

ĉ↑kα =
∑
l,β

(
Ukα,lβ γ̂↑lβ − Vkα,lβ γ̂↓†

lβ

)
, (72)

ĉ↓kα =
∑
lβ

(
Ukα,lβ γ̂↓lβ + Vkα,lβ γ̂↑†

lβ

)
, (73)

where we have introduced the matrices

Ukα,lβ =
∫

d3r ϕ∗
kα{r}ϕ0

lβ{r}, (74)

Vkα,lβ =
∫

d3r ϕ∗
kα{r}ϕ1∗

lβ {r}, (75)

which from the properties of Bloch wave functions reduce to

Ukα,lβ = δklUkα,kβ, Vkα,lβ = δ−klVkα,−kβ . (76)

It is to be noted thatϕkα , ϕ0
kα andϕ1

kα are all Bloch wave functions associated with t
same Bloch wave vector (hence having the same phase shift whenever translated fr
cell to another) but are solutions of different equations. Inserting these expressions i
number density operator̂nσkα introduced in (26), it is readily verified that its expectati
value in the superfluid ground state is given by

〈{µ}|n̂σkα|{µ}〉 =
∑

|Vkα,−kβ |2. (77)

β
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Remembering thatϕkα are the single particle states of the independent Hamilto
(61), with energiesE ′

kα , it can be seen from the Bogoliubov equations (62) that the exp
sion (77) is equivalent to

〈{µ}|n̂σkα|{µ}〉 =
∑
β

|∆0
kα,−kβ |2

(€−kβ + E ′
kα)2

, (78)

where

∆0
kα,lβ =

∫
d3r ϕ∗

kα{r}∆{r}ϕ0∗
lβ {r}. (79)

6. The BCS ansatz

Since (particularly for the middle layers of a neutron star crust, where the effective
enhancement is likely [6,7] to be most important) we are still far from having a suffi
knowledge of the solutionsϕkα{r} for the independent particle model, it will evident
take some time before we can hope to obtain a complete evaluation of the solutio
the coupled equations forϕ0

kα{r} andϕ1
kα{r} using an accurate estimate of the coupl

coefficient∆{r}. In the meanwhile, as an immediately available approximation, offe
the best that can be hoped for as a provisional estimate in the short run, we can
ansatz of the standard BCS kind, which means adopting the prescription

Ukα,lβ = cosθkαδklδαβ, Vkα,lβ = sinθkαδ−k,lδαβ . (80)

Comparing with (53) and (54), the Bogoliubov particle–hole doublet reduces to

ϕ0
kα{r} = ϕkα{r}cosθkα, ϕ1

kα{r} = ϕkα{r}sinθkα, (81)

where the single component wave functionsϕkα{r} are the (more easily obtainable) i
dependent particle eigenfunctions, which can be seen from the preceding work
specifiable as solutions of the simple Schroedinger type equation

H′
indϕkα = E ′

kαϕkα, (82)

where, in the static case under consideration at this stage, we simply have

E ′
kα = Ekα − µ, (83)

whereEkα is the ordinary Bloch energy value as introduced in (19).
It can be seen that the ansatz (81) will provide an exact solution in the limit for w

the relevant coupling field matrix elements

∆kα,lβ =
∫

d3r ϕ∗
kα{r}∆{r}ϕlβ{r}, (84)

reduce to diagonal form, so that we have

∆kα,lβ = ∆kαδklδαβ, (85)

using the notation
∆kα = ∆kα,kα. (86)
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The relation (86) will be a good approximation when∆kα remains close to a fixed valu
∆F (which can be taken without loss of generality to be real and positive by cho
the relevant phase) in the neighbourhood of the Fermi surface, and it will evidently
exactly when the coupling constant is uniform, so that∆{r} = ∆F = ∆kα. In the genera
case, as a result of the periodicity of∆{r} the pairing field matrix elements will auto
matically be diagonal in phase space, namely∆kα,lβ = δkl∆kα,kβ . However the pairing
interactions may couple single particle states belonging to different bands and it wil
be an approximation to neglect those contributions when, for instance,∆{r} is a field of the
radially dependent form that has been obtained [14] within the Wigner–Seitz appro
tion. Actually the only nonvanishing matrix elements are those relating independent
particles states belonging to the same irreducible representation of the space grou
which means that only the band states having the same symmetry properties may
pled. Subject to the validity of (85), the BCS ansatz (81) will reduce the Bogoliubov sy
of differential equations (62) to a purely algebraic eigenvalue system whose solution
the well-known form

€kα =
√
E ′2

kα + ∆2
kα, (87)

cos2 θkα = €kα + E ′
kα

2€kα

, sin2 θkα = €kα − E ′
kα

2€kα

. (88)

It can be seen that the ansatz (81) has the effect of reducing the Bogoliubov trans
tion to the simple form given by

ĉ−σkα = cosθkαγ̂−σkα + σ sinθkαγ̂
†
σ−kα, (89)

which is equivalent to taking

γ̂−σkα = cosθkαĉ−σkα − σ sinθkαĉ
†
σ−kα. (90)

It follows from this that for the state|{µ}〉 characterised by (71), the expectation val
of the Bloch wave vector dependent number density operatorsn̂σkα introduced in (26) will
be given by

〈{µ}|n̂σkα|{µ}〉 = sin2 θkα. (91)

This result is interpretable as expressing the effect commonly described as a smea
the Fermi surface, whereby the smoothed out Bloch wave vector space distributio
replaces the hard cutoff expressed by the Heaviside formula (49) that applies in limit
the pairing interaction is ignored.

7. Formula for the mobility tensor

When the static contribution characterised by (61) is extended by the inclusion
current constraint term proportional to the momentum covectorpi = h̄qi in the effective
energy (34), it can be seen from (15) that as in the independent particle limit, its
to first order will be entirely taken into account by merely making the gauge adjust

ai = −qi, in the kinetic energy operator (10), which means changingki to ki − qi in
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Eq. (63). The first order effect of the current will therefore be given, according to (44
the adjustment

E ′
kα �→ E ′{p}kα = E ′

(k−q)α, (92)

for the single particle energy, and by the ensuing set of infinitesimal transformations

γ̂σkα �→ γ̂{p}σkα, |{µ}〉 �→ |{µ,p}〉, (93)

of quasiparticle operators and state vector, while particularly, in the framework of the
approximation based on the neglect of interband couplings, the Bogoliubov angles
duced in (81) will undergo a corresponding adjustment

θkα �→ θ{p}kα. (94)

As in the absence of pairing, in the strict BCS case characterised by a fixed gap
∆kα = ∆F, the result will still be describable just as a uniform displacementδki = qi in
the space of Bloch wavevectorski .

As the adjusted version of (30), it can be seen that for any state|〉 satisfying the sim-
plicity condition that except for the diagonal contributions characterised byσ ′ = σ , li = ki

andα = β the contributions of the expectation values〈|ĉ†
{p}σkαĉ{p}σ ′lβ |〉 will vanish—or

be negligible to the order of approximation under consideration—the mean current d
by (47) will be given for each spin value by the formula

n̄i
σ =

∑
k,α

vi
kα〈|n̂{p}σkα|〉. (95)

In the framework of the BCS approximation this formula will be applicable, in partic
to the conducting reference state|〉 = |{µ,p}〉, so that by the adjusted analogue of (8
the ensuing replacement of the formula (48), for the mean current in this state, w
obtainable from the substitution

〈{µ,p}|n̂{p}σkα|{µ,p}〉 = sin2 θ{p}kα, (96)

which leads to the expression

n̄i =
∑
σ

n̄i
σ = 2

∑
k,α

vi
kα sin2 θ{p}kα (97)

for the corresponding total current.
Since the total current evidently cancels out in the unperturbed static state|{µ}〉, the

quantity given by (97) will be expressible to first order, in the weak current limit w
which we are working, as

n̄i = 2
∑
k,α

vi
kαpj

∂(sin2 θ{p}kα)

∂pj

. (98)

The conclusion to be drawn from this is that the value of the current will be given to l
order by an expression of the same general form
n̄i = pjKij , (99)
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as in the absence of pairing, but with required mobility tensor now given by an expre
of the form

Kij = 2
∑
k,α

vi
kα

∂(sin2 θ{p}kα)

∂pj

. (100)

It follows from (92) that in this small|p| limit we shall have

∂E ′{p}kα

∂pi

= −∂E ′{p}kα

h̄∂ki

= −∂Ekα

h̄∂ki

= −vi
kα, (101)

and hence that the partial derivative in (98) can be evaluated in the BCS approxima

∂(sin2 θ{p}kα)

∂pi

= −vi
kα

∂(sin2 θkα)

∂E ′
kα

= −vi
kα

∂(sin2 θkα)

∂Ekα

, (102)

in which sin2 θkα is given as a function of the quantityE ′
kα = Ekα − µ and of∆F by (88).

The mobility tensor will therefore be expressible as

Kij = −2
∑
k,α

∂(sin2 θkα)

∂Ekα

vi
kαv

j
kα, (103)

in which, by (88), the relevant coefficient will be given by

∂(sin2 θkα)

∂Ekα

= − ∆2
F

2€3
kα

. (104)

The translation of the discrete summation formula (103) into the language of conti
integration (in the limit in which the size of the mesoscopic cell is much larger tha
lattice spacing) is given by (4).

Except near the base of the neutron star crust where the nuclei may acquire exot
“spaghetti” or “lasagna” type) configurations, it is to be expected that the mobility te
will have the isotropic form

Kij = Kγ ij , (105)

where

K = 1
3
γijKij = −2

3

∑
k,α

∂(sin2 θkα)

∂Ekα

v2
kα, v2

kα = γij v
i
kαv

j
kα. (106)

It is to be observed that subject to the BCS approximation of uniform coupling, me
that there is a constant gap parameter,∆kα = ∆F, the formulae (103) and (106) will b
convertible, using integration by parts, to the form

Kij = 2
∑
k,α

sin2 θkα

h̄2

∂2Ekα

∂ki∂kj

, K = 2

3

∑
k,α

sin2 θkα

h̄2
γij

∂2Ekα

∂ki∂kj

. (107)

This latter formula is useful for the evaluation of the corresponding effective masm�

as defined by
m� = n/K, (108)
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in terms of the relevant total particle number density as given by the prescription

n =
∑
σ

〈| ˆ̄nσ |〉 = 2
∑
k,α

sin2 θkα, (109)

in which, if we only wish to count unbound neutrons, the summation should be taken
for values above a lower cutoff below which the states are bound so that the corresp
values of the velocityvkα will vanish.

The concept of an effective mass has traditionally been a source of confusion as d
definitions have been used in different contexts. Moreover in solid state physics one i
more interested in electric charge (not mass) whose transport is related to the elect
Ei via an Ohm type law as

j i = eni = σ ijEj , (110)

whereni is the electron current density, andσ ij is the relevant electric conductivity tenso
While this conductivity tensorσ ij has the advantage of relating macroscopic mea
able quantities, it depends on the dynamical evolution of the medium unlike the n
introduced mobility tensorKij , on which the effective massm� is defined. The electri
conductivity tensor will be given by an expression of the form

σ ij = e2τKij (111)

in which τ is a timescale characterising the rate of decay (by various scattering proc
towards the zero current state that is the only locally stable configuration in the “no
case. The kind of superconducting case with which we are concerned may be desc
a limit in which the relevant timescaleτ is infinite, so that the conductivityσ ij will also be
infinite, even though the mobility tensorKij has a well behaved finite value as in the “n
mal” case. However it is important to understand that the reason why the relevant tim
τ is effectively infinite in the superconducting case isnot because relevant scattering cro
sections are small (as in the case of a “normal” good conductor) but rather becau
current carrying configuration is locallystable (with respect to scattering processes t
may be quite strong) in a superconducting state, for reasons that will be reviewed
next section.

It is to be remarked that the formula for the mobility tensor (103) is very similar to
formula obtained without pairing correlations, the Heaviside unit step distribution b
merely smeared. In particular the same velocities appear in these formulae. One
have naively guessed that apart from the particle state distribution which is smooth
relevant velocity would have been given not by the ordinary group velocityvi

kα given as
the momentum space gradient of the energy distributionEkα by (2) but by the analogousl
defined quantitỹvi

kα obtained by substituting€kα in place ofEkα, namely

ṽi
kα = 1

h̄

∂€kα

∂ki

. (112)

Actually this latter “pseudovelocity” is interpretable as a mean velocity between par
and holes, since€kα is the energy of a quasiparticle which is a mixture of particles

holes. More specifically, when (as in the simple BCS case for an homogeneous system) the
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gap parameter is independent of the momentum, this modified velocity will be give
the expression

ṽi
kα = vi

kα

E ′
kα

€kα

, (113)

from which it can be seen that̃vi
kα will vanish at the Fermi surface characterised

Ekα = µ, where the number of particles is equal to the number of holes.
In the limit for which, in so far as the unbound neutrons are concerned, the effect

crustal nuclei is small (either because the nuclei occupy only a small part of the vo
as will be the case just above the neutron drip transition, or because the nuclear su
very diffuse, as will be the case near the base of the crust) we shall have

1

h̄2

∂2Ekα

∂ki∂kj

= 1

m⊕ γij , (114)

wherem⊕ is the uniform mass scale appearing in the kinetic energy operator, whic
be comparable with, but for precision somewhat less that, the ordinary neutron mm.
It can be seen by comparing (107) and (109) that in this approximately uniform lim
effective mass for the unbound neutrons will be given simply bym� = m⊕, regardless o
whatever the value of the gap parameter∆ may be.

8. Superconductivity property and critical current

An unsatisfactory feature of the rather profuse contemporary literature dealing
various kinds of what is commonly referred to as “superconductivity” in astrophysi
relevant contexts (including such exotic varieties as colour superconductivity in quar
densates) is the rarity of any serious theoretical consideration of the actual prop
superconductivity in the technical sense, meaning the possibility of having a rela
moving current that is effectively stable, or in stricter terminologymetastable, with re-
spect to small perturbations—such as would normally give rise to a dissipative da
mechanism of a resistive or viscous kind.

In the astrophysical literature concerned with pulsars it has generally been tak
granted that neutron currents of the kind considered in the present work actually ar
acterised by superconductivity in the sense of being metastable with respect to re
kinds of perturbation. In this section we shall investigate the conditions under whic
supposition of metastability is indeed valid. The issue is that of the stability, for s
but finite values of the momentum covectorpi , of the superconducting reference st
|〉 = |{µ,p}〉 that is characterised by the minimisation of the combination (34).

The conducting state|{µ,p}〉 was derived by minimising the energy expectation〈|Ĥ |〉
subject to the condition that the particle number expectation〈| ˆ̄n|〉 and the current expec
tation 〈| ˆ̄ni |〉 were held fixed. It is physically reasonable to suppose the particle nu
expectation〈| ˆ̄n|〉 really will be preserved under the conditions of chemical equilibrium
are envisaged in the relevant applications, but no such consideration applies to the
expectation〈| ˆ̄ni |〉 which in a “normal” state would tend to be damped down by many c

ceivable kinds of scattering process. The physically pertinent question is therefore whether
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|{µ,p}〉 will still minimise 〈|Ĥ |〉 with respect to small relevant perturbations—subjec
course to the preservation of the particle number expectation〈| ˆ̄n|〉 as before—when th
prior assumption of preservation of〈| ˆ̄ni |〉 is abandoned. Subject to the particle num
conservation condition

δ〈| ˆ̄n|〉 = 0, (115)

this stability requirement is equivalent to the condition of minimisation of〈|Ĥ ′|〉 meaning
that any admissible perturbation must satisfy

δ〈|Ĥ ′|〉 > 0, (116)

where according to the notation introduced in (35),

Ĥ ′ = Ĥ ′{p} + pi
ˆ̄ni. (117)

According to the reasoning of the previous section, the relevant adjustment of (70
give us

Ĥ ′{p} =
∑
σ,k,α

€{p}kα

(
γ̂

†
{p}σkαγ̂{p}σkα − sin2 θ{p}kα

)
, (118)

so that the specifications (117) and (95) provide the variation formula

δ〈|Ĥ ′|〉 =
∑
σ,k,α

(
€{p}kαδ〈|γ̂ †

{p}σkαγ̂{p}σkα|〉 + piv
i
kαδ〈|n̂{p}σkα|〉), (119)

in which, for the BCS case, it can be seen from (87) that we shall have

€{p}kα =
√
E ′2{p}kα + ∆2

kα. (120)

In this BCS case, the action on the conducting state|{µ,p}〉 of a typical quasiparticle cre

ation operator̂γ †
{p}↑kα will provide only three nonvanishing terms in the sum (119), nam

those given by

δ〈|γ̂ †
{p}↑kαγ̂{p}↑kα|〉 = 1, (121)

together with the number variation contributions

δ〈|n̂{p}↑kα|〉 = cos2 θ{p}kα, δ〈|n̂{p}↓−kα|〉 = −sin2 θ{p}−kα. (122)

It follows from the symmetry propertiesvi
kα = −vi

−kα and θkα = θ−kα that the explicit
dependence on the Bogoliubov angle will cancel out at first order in the net energ
tribution provided in (119) by such an excitation, so that this energy contribution w
positive if and only if

€{p}kα + piv
i
kα > 0. (123)

It is to be noted that such an individual quasiparticle excitation will in general violat
requirement (115) to the effect that the number of real particles should be conserved
is evident from (122) that such violations may have either sign and so can be cancel
by the combined effect of two or more elementary excitations. What, in a stable cas

not be cancelled out is the combined effect of several quasiparticle energy contributions
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in (119): it can be seen that the quasiparticle energy contributions will always add
give the positive result needed for stability provided the inequality (123) is satisfied f
admissible modes.

The stability condition (123) that we have derived for a BCS type inhomogeneou
perconductor is consistent with Landau’s classical treatment based on vaguer h
arguments in the context of superfluid Helium 4 [24]. Since the quasiparticle energy€{p}kα

is always positive, it is clear that the stability condition (123) will always be satisfie
piv

i
kα > 0. Therefore an instability in the superfluid conducting state can only occur w

piv
i
kα < 0. Rewriting the inequality (123) as€{p}kα > −piv

i
kα, squaring both sides an

substituting the expression (43) forE ′{p}kα in (120) we see that in the BCS case there
remarkable simplification (which does not seem to have been pointed out before) w
the terms that are nonlinearly dependent on the momentum covectorpi cancel out, so tha
the superfluid conducting state will be stable if the following inequality is satisfied

2piv
i
kαE ′

kα <€2
kα. (124)

This can be rewritten in terms of the “pseudovelocity” introduced in (112) as

piṽ
i
kα <

1
2
€kα, (125)

which simplifies to the following form whenever the BCS gap is independent of the
mentum

pi

∂

∂ki

(
ln

{
€2

kα

})
< h̄. (126)

The inequality (124) is evidently verified for elementary excitations above the F
level for whichE ′

kα > 0. In the derivation of the inequality (124) we have assumed
piv

i
kα < 0. Actually there will always be some modes for which this is satisfied s

wheneverpiv
i
kα > 0 we shall havepiv

i
−kα < 0.

The stability condition (123) (which has to be satisfied for all modes) can therefo
restated as the requirement that the magnitudep of the mean particle momentum covec
pi lies below some critical thresholdpc

p < pc (127)

in which, for an approximately isotropic distribution depending only on the magnituk

of the wavenumber covectorki , the critical valuepc will be given by

pc ≈ min
k,α

{
1

2vkα

(
|E ′

kα| + ∆2
kα

|E ′
kα|

)}
. (128)

SinceE ′
kα vanishes on the Fermi surface, it is clear from (128) thatpc will also vanish—

so that there will be no phenomenon of superconductivity—not only when the gap∆kα

vanishes everywhere, but even when it vanishes just in the neighbourhood of the
surface. When the mean value∆F of the gap at the Fermi surface is nonzero but sm
compared with the other relevant energy scales—as will typically be the case—it c
seen that the minimum in (128) will be attained for energy values differing from the F

value by a small but finite positive or negative amount that will be given approximately
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kα ≈ ±∆F. In such a case, it follows that the critical momentum value (128) wil

expressible in terms of the mean valuevF of the group velocity magnitudevkα at the Fermi
surface by the approximation

pc ≈ ∆F

vF
. (129)

Introducing the critical velocity asvc ≡ pc/m�, the criterion (129) can be written as

vc ≈ ∆F

m�vF
. (130)

In the limit of an homogeneous medium for whichm� = m⊕ , the critical velocity reduces t
an expression which is commonly found in the literature concerning homogeneous e
superconductivity in metals [25], namely

v
(0)
c ≈ ∆

(0)

F

h̄kF
, (131)

(using the superscript(0) to indicate what would be obtained for uniform values of
microscopic effective massm⊕ and potentialV ) wherekF is the radius of the Fermi spher
It must be emphasized however that the critical velocity of an inhomogeneous sup
(such as the neutron superfluid in the inner layers of a neutron star crust) will differ
the estimate (131) by a factor

vc

v
(0)
c

= ∆F

∆
(0)

F

SF

S
(0)

F

, (132)

whereSF andS
(0)

F are the Fermi surface areas in the inhomogeneous and homoge
cases, respectively. Since the opening of band gaps in the single particle energy sp
decreases the Fermi surface area, the critical velocity is therefore expected to be
than the expression (131) assuming that∆F ≈ ∆

(0)
F .

For a gap of the order of an MeV, in a region where the kinetic contribution to
Fermi energy has a typical value of the order of a few tens of MeV, the formula (
implies a critical momentum value corresponding to a kinetic energy of relative moti
the order of hundreds of keV per neutron. This is comparable with the total kinetic e
of rotation in the most rapidly rotating pulsars. However the relative rotation speeds
neutron currents that are believed to be involved in pulsar glitch phenomena are very
smaller—by factors of 10−3 or even far less [23]—than the absolute rotation speeds o
neutron star. In all such cases it may therefore be concluded that the superfluidity cr
(129) will be satisfied within an enormous confidence margin.

It is to be remarked that in the more thoroughly investigated context of laborator
perfluidity [24] Landau’s simple linear formulation of the stability problem in terms
of phonons provides only an upper limit on the critical momentum whose true value is
siderably reduced by the less mathematically tractable—since essentially nonlinear—
of protons. Analogous considerations presumably apply in the present context. This
that although our present treatment places the estimate (129) on a sounder footing th

provided by any previous work of which we are aware, it should still be considered just as
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an upper bound on the true critical value which is likely to be substantially reduced by
linear effects whose mathematical treatment is beyond the scope of the methods us
Despite this caveat, the prediction of genuine superconductivity in the context of glit
neutron star crusts should be considered to be very robust. The justification for suc
fidence is that—according to the considerations outlined in the preceding paragrap
relevant magnitudes of the neutron currents in question correspond to values of the n
momentump that are extremely small compared with the order of magnitude give
(129). For such very low amplitude currents there is no obvious reason to doubt t
lidity of conclusions—including estimates of effective masses, as well as the predict
genuine superfluidity—that are based on the simple kind of linearised treatment use

9. Conclusions

In the middle layers of the crust, where the effect of inhomogeneities will be impo
our previous analysis neglecting the effect of the superfluid gap lead to the predicti
that there will be a strong “entrainment” effect whereby the value ofm� will become
very large compared withm. This prediction has now been confirmed by an analysis
based on the phenomenological model of Oyamatsu et al. [26] where values as la
m�/m ∼ 15 has been found at a baryon densitynb = 0.03 fm−3. Our present analysis in
dicates that this conclusion will not be significantly affected by taking the relevant pa
gap∆ into account. Thus although the pairing is essential for the actual phenomen
superconductivity, on the other hand, in so far as the effective mass is concerned, ne
the effect of superconductivity pairing will indeed be justifiable as a robust first approx
tion, at least for moderate values of the gap parameter compared to the kinetic contr
to the Fermi energy.

The unimportance of pairing from the point of view of entrainment, which has
usually assumed (see for instance Borumand et al. [3]) and explicitly shown in the p
work, can be seen from the consideration that, when∆αk is small compared to the Ferm
energyµ, the coefficient (104) will be very small everywhere except in a thin layer w
width of the order of∆αk near the Fermi surface locus whereEαk = µ, which means tha
when the coupling is weak its effect will be entirely negligible. In sensitive cases for w
the geometry of the energy contours near the Fermi surface is complicated by band
a moderately strong pairing effect might make a significant difference by smoothin
variations of the mobility tensor as a function of density, but does not seem likely
this smearing effect would make much difference to the large scale average pro
of the mobility tensor. In other words the effective mass is expected to be much
sensitive to band gaps than to the pairing gap. The main reason is that∆ appears only
in the number density distribution whereas band gaps (resulting from Bragg scatte
dripped neutrons by crustal nuclei) have a strong influence upon the neutron velocvi

αk

which is vanishingly small in this case.
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