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The 4-dimensionally covariant approach to multiconstituent Newtonian fluid dynamics
presented in the preceding paper of this series is developed by construction of the relevant
4-dimensional stress–energy tensor whose conservation in the non-dissipative variational
case is shown to be interpretable as a Noether identity of the Milne spacetime structure.
The formalism is illustrated by the application to homogeneously expanding cosmological
models, for which appropriately generalized local Bernoulli constants are constructed.
Another application is to the Iordanski type generalization of the Joukowski formula for
the Magnus force on a vortex. Finally, at a global level, a new (formally simpler but more
generally applicable) version of the “virial theorem” is obtained for multiconstituent —
neutron or other — fluid star models as a special case within an extensive category
of formulae whereby the time evolution of variously weighted mass moment integrals
is determined by corresponding space integrals of stress tensor components, with the
implication that all such stress integrals must vanish for any stationary equilibrium
configuration.
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1. Introduction

This paper is the second of a series providing a systematic treatment of the essen-

tial dynamical properties of multi-fluid models (as needed for the description of

a neutron superfluid moving with respect to a normal background) using a non-

relativistic but 4-dimensionally covariant formalism in which the preferred Newto-

nian time gradient tµ features as a null eigenvector of the degenerate contravariant

space metric tensor γµν . In the preceding paper,1 which will be referred to simply

as (I), it was shown how, in the absence of dissipation, the equations of motion are

obtainable, in the conservative limit, from a variation principle given, in a fixed

background gravitational field φ, by a Lagrangian Λ that is specified as a function
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of a set of conserved current 4-vectors n µ
X

. Subject to the condition that the varia-

tion of these currents be restricted to have an appropriate world line dependent

form, the dynamical equations were derived as the condition of vanishing of a cor-

responding set of 4-force densities fX
ν that were specified by the equation (I-159)

in terms of the dynamical conjugates of the currents, namely the set of 4-covectors

πX
ν representing the effective energy–momentum per particle of the species labelled

by the suffix X.

The present paper (II) describes the generalization needed to allow for active

self gravitational effects, which can be dealt with in the conservative case simply by

adding an appropriate gravitational field contribution Λgrf to the action density. It

will be shown how the associated stress momentum energy density 4-tensor will be

subject to various (generalized Bernoulli and virial type) conservation laws ensuing

from the invariance of the theory with respect not just to Galilean transformations

but also to their accelerated, Milne type, generalizations, (which are important for

cosmological applications). A formal derivation of the relevant Noether identities is

provided in the appendix. A following paper (III) will describe the generalization

needed to allow for non-dissipative effects such as viscosity, resistivity and drag on

superfluid vortex lines.

2. Stress Momentum Energy Tensor

Experience with the technically simpler relativistic case2 (and previous work on

the Newtonian case3) suggests the utility at this stage of introducing the stress

momentum energy density tensor

T µ
ν =

∑

nµ
X

πX
ν + Ψδµ

ν , (1)

in which the covectors πX
ν are the 4-momenta defined by (I-152) and Ψ is the

generalized pressure function defined by (I-148). The utility of this (chemically

covariant) tensor derives from the property that its divergence can be seen to be

given just by the sum

fµ =
∑

fX
µ , (2)

of the relevant non-gravitational force densities — which could be expected to

cancel each other out, even in a non-conservative model, so long as it is isolated

from external interactions — plus the relevant gravitational force density which can

always be expected to be present, by the simple formula

∇µT µ
ν = fν − ρ∇νφ , (3)

a relation that is shown in the appendix to be interpretable as a Noether identity.

It is to be remarked that the 3-momentum density vector given by (I-146)

will be obtainable directly from (1) as the mixed space and time projection speci-

fied by

Πµ = tρT
ρ
νγνµ . (4)
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The gauge independent character of this 3-momentum density Πµ, as manifested by

its original specification (I-145) is to be contrasted with the highly gauge dependent

character of the corresponding energy density current, namely

Uµ = −T µ
νeν , (5)

and in particular of its time component, the ordinary energy density, which will be

given by

U = Uµtµ = −
∑

n
X
πX

νeν − Ψ . (6)

The latter will evidently be decomposable in the form

U = U
mat

+ U
pot

, (7)

in which the potential energy contribution is just the opposite of the corresponding

Lagrangian contribution (I-94), i.e.

U
pot

= ρφ = −Λ
pot

, (8)

while the material contribution will be given by

U
mat

= −
∑

n
X
µX

νeν − Ψ . (9)

The complete stress momentum energy density tensor will evidently have a cor-

responding decomposition as the sum of a purely material part and a gravitational

contribution in the form

T µ
ν = T µ

mat ν − φρµtν , (10)

with

T µ
mat ν =

∑

nµ
X

µX
ν + Ψδµ

ν , (11)

in which Ψ is the same as before, i.e. there is no need to distinguish between Ψ

and Ψ
mat

, because its gravitational contribution cancels out so that it is directly

expressible as

Ψ = Λ
mat

−
∑

n ν
X
µX

ν , (12)

and its general variation (I-151) simplifies as

δΨ = −
∑

n ν
X

δµX
ν . (13)

Actually we can take the decomposition one step further by expressing the mate-

rial contribution as the sum of a kinetic contribution and a purely internal (and

therefore gauge invariant as well as chemically covariant) part in the form

T µ
mat ν = T µ

kin ν + T µ
int ν , (14)

where the kinetic contribution is given simply by

T µ
kin ν =

∑

nµ
X

pX
ν (15)
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and the internal contribution is the Milne gauge invariant pressure tensor, P µ
ν , say,

which is given by

T µ
int ν = P µ

ν =
∑

nµ
X

χX
ν + Ψδµ

ν , (16)

with Ψ given in terms of quantities obtained just from the internal contribution

to the Lagrangian by the formula (I-148). The corresponding decomposition of the

material energy contribution (9) will have the form

U
mat

= U
kin

+ U
int

(17)

in which it can be seen, using (I-48), that we shall have

U
kin

= Λ
kin

= 1
2

∑

γν
µnµ

X
pX

ν , U
int

=
∑

γν
µnµ

X
χX

ν − Λ
int

. (18)

In terms of the ether rest frame chemical potentials defined by

χX = −χX
ν eν , (19)

it can be seen that we shall have

U
int

=
∑

n
X
χX − Ψ , δU

int
=

∑

χX δn
X

+
∑

γν
µnµ

X
δχX

ν . (20)

It follows from identity (I-144) that the contraction of the pressure tensor with

the degenerate space metric γµν gives a result that is symmetric, i.e.

γρ[µP ν]
ρ = 0 . (21)

It can be seen that this entails a corresponding symmetry property for the space

projected part of the complete stress momentum energy density, namely

γρ
[µγν]σT σ

ρ = 0 . (22)

Putting all the pieces together again, we see that this complete stress momentum

energy density tensor will be expressible as

T µ
ν = P µ

ν +
∑

nµ
X
(pX

ν − mXφtν) . (23)

3. Action and Stress Energy for the Gravitational Field

Up to this point we have been treating the gravitational field just as a given back-

ground, but we can promote it to the status of an active dynamical field by taking

φ to be an extra independent variable in the Lagrangian and adding in an extra

gravitational field term so as to obtain a total action density given by

Λ
tot

= Λ + Λ
grf

, (24)

in which the gravitational field term is given by

Λ
grf

= (8πG)−1gµ∇µφ , (25)

where the gravitational field is defined according to the potential φ as

gµ = −γµν∇νφ . (26)
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Since the only other contribution involving φ is the potential energy term Λ
pot

given by (I-136), it can immediately be seen that the requirement of invariance of

the total action with respect to localized perturbations of φ does indeed give the

usual Poisson source equation, which, in the covariant formulation we are using

here, will be given by

γµν∇µ∇νφ = 4πGρ . (27)

This can be alternatively presented in a manner reminiscent of the relativistic

Einstein equation, using the notation of the Newton–Cartan formalism described

above, as

Rµν = 4πGρtµtν , (28)

where Rµν is the Ricci type trace of the Newton–Cartan curvature, as given by

(I-31).

For reason discussed in the appendix, there will be an associated gravitational

stress momentum energy density tensor given by the formula

T µ
grfν

= −(4πG)−1
(

gµ∇νφ − 1
2δµ

νgρ∇ρφ
)

(29)

(which was mistyped in the previous version3 where the initial minus sign was

omitted).

The purely gravitational contribution (29) can be added to the contribution

(23) associated with the material source distribution to give a grand total

T µ
totν

= T µ
ν + T µ

grfν
, (30)

that satisfies the identity

∇µT µ
totν

= fν , (31)

in which all that remains on the right is the sum (2) of the non-gravitational force

density contributions, if any, that are defined by the variational formula (I-159).

In the strictly conservative case for which the variational field equations,

fX
ν = 0 , (32)

are satisfied, and much more generally in any system that is effectively isolated so

that the separate contributions in (32) cancel out in the sum (2), leaving a vanishing

total force density, fµ = 0, we shall simply be left with a total energy momentum

conservation law of the form

∇µT µ
totν

= 0 , (33)

in which the conserved tensor field (30) can be redecomposed in the form

T µ
totν

= T µ
matν

+ T µ
grtν

, (34)

where the total gravitational contribution is given by

T µ
grtν

= T µ
potν

+ T µ
grfν

. (35)
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It is to be noted that there will be a corresponding total energy density

U
tot

= −tµT µ
totν

eν = U + U
grf

(36)

in which the contribution (29) provides a gravitational field energy density that can

be evaluated, using (5), as

U
grf

= −tµT µ
grfν

eν = −Λ
grf

= − 1
2ρφ − (8πG)−1∇µ(φgµ) . (37)

It can thereby be seen from (7) that the total energy density will be expressible in

the form

U
tot

= U
mat

+ U
grt

(38)

in which the total gravitational energy contribution

U
grt

= U
pot

+ U
grf

(39)

will be given by

U
grt

= −tµT µ
grtν

eν = 1
2ρφ − (8πG)−1∇µ(φgµ) . (40)

It is to be observed that the final divergence term in (37) and (40) will cancel

itself out when integrated over the volume surrounding a confined source of the kind

that will be considered in our discussion of virial theorems in Section 7, provided

that (as will always be possible in such a case) the gauge is chosen in such a way

that the large distance limit of φ is zero. The remaining term in (37) will then

half cancel the corresponding potential energy contribution given by (8), leaving a

remaining term in (40) that is only half of U
pot

. The effect of this semi-cancellation

is to provide a total in which the gravitational binding between each pair of particles

is (as it should be) counted only once, not twice.

Another point to be noted is that there will be no corresponding gravitational

field contribution to the spacelike 3-momentum density (4), i.e. we shall have

tρT
ρ

grfν
γνµ = 0 . (41)

It can thus be seen from (5) that (4) will be replaceable by the equivalent specifi-

cation

Πµ = tρT
ρ

totν
γνµ . (42)

4. Spacetime Symmetries and Homogeneous Cosmological Models

Let us now consider cases in which all or part of the system under study is invariant

with respect to the action of one or several symmetry generators, kµ
a , a = 0, 1, . . . .

For example, in an application to a neutron star model, k µ
0 might be a stationarity

generator, i.e. the generator of a one parameter time translation group (in which

case it would specify a natural choice of ether vector by the identification eµ = k µ
0 )

and k µ
1 might be an axisymmetry generator, i.e. the generator of a one parameter
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group of rotations about some preferred symmetry axis. This means that all phys-

ically well-defined fields must be invariant under the action of the corresponding

Lie differentiation operators which we shall designate by the short hand notation

–La ≡ ~ka–L, or simply –L = ~k–L when we are only considering a single generator so

that no ambiguity arises. It is to be emphasized however that physical invariance

does not necessarily require vanishing of the Lie derivative of a field q that is

gauge dependent, but only that its Lie derivative –Lq should be cancellable by some

infinitesimal gauge transformation of the kind denoted by d̆q in the discussion at

the end of Section 6 of Ref. 1. More specifically, all that is required is that for each

of the relevant Lie differentiation operators –La there should be a corresponding

infinitesimal gauge transformation operator d̆a such that any relevant field satisfies

the condition

–Laq + d̆aq = 0 . (43)

The occurrence of symmetries of this more general kind, involving non-vanishing

infinitesimal gauge transformations, is exemplified by the noteworthy case of the

Milne type4 homogeneous cosmological models that are described below.

A minimal requirement for any symmetry generator k µ
a is that its action should

preserve the Milne structure of Newtonian spacetime. For the basic Coriolis struc-

ture fields tµ and γµν the question of whether there is a corresponding gauge trans-

formation operator d̆a does not arise, since they are gauge independent, so all that

is required is the vanishing of their Lie derivatives, conditions that reduce (I-17) to

the form

tν∇µk ν
a = 0 , γρ(µ∇ρk

ν)
a = 0 , (44)

from which the space projected and complete spacetime divergence conditions

γµ
ν∇µk ν

a = 0 , ∇νk ν
a = 0 , (45)

are obtained as corollaries. In a particular Aristotelian frame with respect to an

ordinary orthonormal system of coordinates {t, X i}, the conditions (44) will be

expressible as

∇
0
k 0

a = 0 , ∇ik 0
a = 0 , ∇ (ika

j) = 0 . (46)

In the context of general relativity the well-known condition for k µ
a to be a

symmetry generator of the spacetime structure is just the well-known Killing equa-

tion ∇(µka
ν) = 0, which guarantees the invariance of the spacetime metric gµν and

hence also of the derived Riemannian connection. However in the Newtonian case,

since the connection is not simply derivable from the structure fields tµ and γµν , the

corresponding first order differential conditions (44) will not by themselves be suf-

ficient to qualify kµ
a as a spacetime symmetry generator. In order for k µ

a to qualify

as a Newtonian spacetime symmetry generator its action must also preserve the

flat connection Γ ν
µ ρ. Since the latter is subject to the gauge dependence condition

(I-75) its Lie derivative will not have to vanish absolutely, but only modulo the
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action of some infinitesimal gauge transformation, which will be characterized by

some (infinitesimal) boost potential βa, with a derived time (but not space) depen-

dent boost vector bµ and a corresponding acceleration vector aµ, that are given, as

in (I-15) by

bµ
a = γµν∇νβa , γµν∇νb ρ

a = 0 (47)

and

aµ
a = eν∇νbµ

a = γµν∇ναa , αa = eν∇νβa . (48)

Modulo a choice of rest frame at some arbitrary reference event, the specifi-

cation, according to (I-16), of an ether frame field eµ is equivalent to the specifi-

cation of a corresponding connection Γ ν
µ ρ, namely the one with respect to which

the vector field eµ is mapped onto itself by parallel transport. The preservation of

this connection by the action generated by k µ
a will therefore be ensured simply by

the requirement that it should preserve the ether vector. Substituting this vector

eµ in place of q in the general purpose preservation condition (43), one sees from

the transformation rule (I-74) and the parallel transport property (I-16) that the

requirement of preservation of the ether vector is equivalent to the condition that

the relevant boost transformation b µ
a should be given simply by

bµ
a = eν∇νk µ

a . (49)

It is evident that this will conveniently vanish, so that there will be no need to

bother about allowance for the gauge adjustment, in cases for which the symmetry

generator k µ
a is time independent, as will be the case for the symmetries that

are most relevant in applications to rotating star models, namely stationarity and

axisymmetry. On the other hand the gauge adjustment will have an indispensible

role in the kind of time dependent translation symmetries that are relevant in

homogeneous self gravitating (cosmological type) configurations such as will be

described immediately below. In all cases, it can be seen from (44) that the formula

(49) can be used to express the gradient of the symmetry generator as the sum of

orthogonally projected and mixed components in the form

∇µk ν
a = γ ρ

µ γ ν
σ ∇ρk

σ
a + tµb ν

a . (50)

In terms of the boost acceleration obtained from (49) using (48), the invariance

condition for the connection Γ ν
µ ρ will be given according to the general principle

(43) by the formula

∇µ∇νk ρ
a = tµtνa ρ

a , (51)

whose derivation is based on the use of the simple flat space special case of the

Yano formula5 for the Lie derivative of a symmetric connection.

The general version of the Yano formula, including allowance for curvature,

is needed for the application to the Newton–Cartan connection (I-25) whose Lie

derivative will have the form given by

–La ω ρ
µ ν = DµDνkρ + R ρ

σµ νkσ . (52)
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In the Newtonian case (unlike the relativistic case) the conditions for invariance

of the relevant (Milne) spacetime structure, namely the conditions (44) and (51),

are not sufficient to ensure invariance of the gravitational field, as embodied in the

independent gauge invariant connection ω ρ
µ ν , or equivalently in the gauge depen-

dent field gµ. In view of its gauge independence, the invariance under the action

of k µ
a of the Newton–Cartan connection requires simply that its Lie derivative, as

given above, should vanish,

–La ω ν
µ ρ = 0 . (53)

Subject to the Milne structure invariance conditions (44) and (51), it can be seen

from formula (52) (using the expression (I-29) for the curvature) that the sup-

plementary condition (53) for invariance of the gravitational field reduces to the

condition obtained by application of the general requirement (43) to the gauge

dependent gravitational field vector gµ. It evidently follows from (I-23) that this

invariance requirement will take the form

–La gµ = aµ
a , (54)

in which the Lie derivative of the field will of course be given by the well-known

commutator formula

–La gµ = k ν
a ∇νgµ − gν∇νk µ

a . (55)

It similarly follows from (I-24) that at the more highly gauge dependent level of

the gravitational potential φ, the corresponding field invariance condition will be

expressible simply as

k ν
a ∇νφ = −αa , (56)

where αa is the acceleration potential given by (48).

The prototype illustration of symmetries that are non-trivial, in the sense of

requiring a nonzero gauge transformation according to (49), is provided by the

case of homogeneous isotropic cosmological type models, with expansion described

in terms of a comoving radial scale factor σ say, and 3-velocity vi given in terms

of Cartesian space coordinates X i by vi = HX i where the (time dependent but

spatially uniform) Hubble parameter is given by H = σ̇/σ (using a dot for ordinary

time derivation). Since the pressure is postulated to be uniform it has no effect on

the motion, so the fluid particles will be effectively in free fall with respect to the

background gravitational field, which will be given by φ = 2
3πGργijX

iXj .

One of the things that delayed the discovery of these configurations is their lack

of stationarity, i.e. their essentially time dependent nature. Their matter distribu-

tions, and in particular the density ρ are not invariant with respect to the action

of the ordinary time translation symmetry generator k µ
0 that is definable in terms

of the flat Aristotelian coordinates {t, X i} used above by

k 0

0 = 1 , k i
0 = 0 , (57)
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which means that it is simply identifiable with the relevant Aristotelian ether vector,

k µ
0 = eµ . (58)

The misguided presumption that the cosmological model would have to be sta-

tionary was one of the psychological obstacles that, prior to its demolition by

Friedmann’s theoretical insight (and Hubble’s observations) had prevented every-

one (including Einstein) from seriously attempting to carry out the non-trivial but

(compared with the development of general relativity) not so difficult technical step

that was finally taken by Milne.

The stationarity generator (58) illustrates a distinction that does not arise in

general relativity theory, where the property of being a Killing vector, i.e. a solu-

tion of the equation ∇(µk
ν)
a = 0, ensures the invariance not only of the background

metric gµν but also, automatically, of the gravitational field as embodied by the

associated connection. In a Newtonian context it is necessary to make a distinc-

tion between what may be termed weak Killing vectors, or Killing–Milne vectors,

meaning those that just satisfy the conditions (44) and (51) for invariance of the

background spacetime structure, and what may be termed strong Killing vectors or

Killing–Cartan vectors, meaning those that not only satisfy the conditions (44) and

(51) for preservation of the Milne structure but also the supplementary condition

(54) for invariance of the gravitational field and hence of the complete Newton–

Cartan structure. Regardless of the matter distribution, the stationarity generator

k µ
0 given by the specification (57) will always be a Killing–Milne vector, since it

obviously satisfies (44) and also (with vanishing boost acceleration) (51). However

in the particular application described above k µ
0 is not a Killing vector in the strong

sense because it does not satisfy (54).

Although they are not stationary, the cosmological configurations described

above are obviously isotropic in the sense of being invariant (in this case with-

out any need for an associated boost transformation) under the action of the set of

ordinary angular symmetry generators k µ
j that are definable for values j = 1, 2, 3

of the index a as follows. For a rotation about an axis specified by a space unit

vector ν i
j , with components given, with respect to the flat Aristotelian coordinate

system we have been using, simply by

ν i
j = δ i

j , (59)

the corresponding angular symmetry generator will be given by the prescription

k 0

j = 0 , k i
j = Y i

kνk
j , (60)

in terms6 of the flat space Killing–Yano 2-form, whose (Cartesian) components are

given by

Yij = εijkXk , (61)

and which is characterizable, even with respect to non-Cartesian coordinates, by

the Killing–Yano equation

∇(iYj)k = 0 . (62)
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Whatever the matter distribution may be, it is evident that, like the stationarity

generator k µ
0 , these axisymmetry generators k µ

j for j = 1, 2, 3 will always satisfy

(44) and (again with vanishing boost acceleration) also (51), so that they will

always qualify as Killing vectors in the weak sense. In the particular example of

the cosmological application described above it is also evident that (in this case

unlike the stationarity generator k µ
0 ) the rotation generators will satisfy the further

condition (54) that qualifies them for description as Killing–Cartan vectors.

We now come to the most essential, though not so obvious, symmetry feature

of the cosmological configurations described above, which is that as well as being

isotropic they are also homogeneous (with respect to space but not time) in the sense

of being characterized by a set of time dependent space translation symmetries

with generators to which we shall attribute negative label values, a = −1, −2,

−3 (since the positive label values a = 1, 2, 3 have already been used up in the

specification (60) of the rotation symmetry generators). With respect to the same

ordinary Aristotelian system of orthonormal coordinates {t, X i} as above, these

space translation symmetry generators will be given by the specification

k 0

−j = 0 , k i
−j = σδi

j , (63)

for j = 1, 2, 3. What delayed the discovery of such symmetries (even after Fried-

mann had overcome the psychological barrier of the stationarity presumption) until

Milne saw how to exploit the gauge invariance, is that (in order for the generators

(63) to qualify as Killing vectors in both the weak and strong sense described

above) the effect of their action needs to be cancelled by the effect of correspond-

ing (non-linearly) time dependent (so non-Galilean) transformations characterized

by (spatially uniform) boost vectors b i
−j and boost potentials β−j given by the

formulae

b i
−j = σ̇δi

j , β−j = σ̇γjiX
i . (64)

In particular the velocity field can immediately be seen to satisfy the invariance

condition –L−avi = b i
−a, while the gravitational field will satisfy the corresponding

invariance conditions

–L−j gi = a i
−j , –L−j φ = −α−j , (65)

(so that the translation generators k µ
−j qualify as Killing vectors in the strong sense)

where

a i
−j = σ̈δ i

j , α−j = σ̈γjiX
i . (66)

By contraction with the stress momentum energy density tensor T µ
ν , we can

use the symmetry generators k µ
a to construct corresponding generalized momentum

currents

P µ
a = T µ

νk ν
a , (67)

of which, for example, P µ
0 will be interpretable as the negative of an ordinary energy

current, P µ
1 as a current of ordinary angular momentum (about the X 1 axis in the
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Aristotelian coordinate system used above) while P µ
−1 will be interpretable as a

current transporting a kind of generalized linear momentum (in the direction of the

X1 axis). The latter would reduce to a current of linear momentum of the ordinary

kind in the non-expanding (weak gravitational coupling) limit characterized by a

time independent value of the factor σ in the specification (63).

Using the Killing vector conditions (44) in the decomposition (50), it can be

seen to follow from the stress momentum energy tensor symmetry property (22),

that we shall have

T µ
ν∇µk ν

a = T µ
νtµb ν

a , (68)

where bµ
a is the boost vector given by (49). As a corollary of this useful lemma,

it evidently follows from the tensor divergence formula (3) that the corresponding

generalized momentum densities will have scalar divergences given by

∇νP
ν
a = k ν

a (fν − ρ∇νφ) + Πν∇νβa . (69)

On the right of this formula, the first term (involving the total external force fν

if any) is of a familiar kind, representing the ordinary rate of energy loss (per

unit volume) in the case of the stationarity generator k µ
0 and representing torque

density (about the X1 axis) in the case of the axisymmetry generator k µ
1 , and in

these cases the last term will be absent. This last term (involving the gradient

of the boost potential βa) will only be needed in cases for which the symmetry

generator k µ
a is time dependent. In the case of an isolated system, as characterized

by a vanishing total (external) force density, fµ = 0, and by a total mass current

ρµ that satisfies the Newtonian mass conservation law (I-108), it can be seen that

(69) will be expressible in the form

∇ν(P ν
a − βaρν) = −ρ(αa + k ν

a ∇νφ) , (70)

in which the right hand side will drop out altogether if the gravitational potential

φ satisfies the condition (56) of invariance under the symmetry action generated

by k ν
a , a condition for which it is necessary that k ν

a should not just be a Killing–

Milne vector, as has been assumed in the derivation of (69), but more particularly

a Killing–Cartan vector in the sense discussed above, meaning that its action pre-

serves the gravitational field as well as the background spacetime structure.

Independently of this latter (field invariance) restriction, but subject to the

requirement that the boost contribution should be absent, an isolated system

will always be characterized by a conservation law for a corresponding, suitably

adjusted, total generalized momentum vector. To start with, we define the (unad-

justed) total momentum vector in the obvious way, simply replacing T µ
ν in (67) by

the total stress energy tensor (30) which gives

P µ
atot

= T µ
tot νk ν

a = P µ
a + T µ

grf νk ν
a . (71)

In the case of an isolated system, as characterized by a vanishing total (external)

force density, fµ = 0, and by a total mass current ρµ that satisfies the Newtonian
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mass conservation law (I-108), it can be seen that the analogue of (69) for this total

will reduce to a generalized total momentum divergence law of the form

∇ν(P ν
atot

− βaρν) = −ραa . (72)

Using the Poisson source equation (27) and the identity αa∇νgν = ∇ν(αagµ +φa ν
a )

the terms can finally be regrouped in a single divergence on the left in the form

∇νP
ν

aaug
= 0 , (73)

expressing conservation of a suitably augmented total generalized momentum cur-

rent that is given by the prescription

P ν
aaug

= P ν
atot

− βaρν − (4πG)−1(αagµ + φa ν
a ) . (74)

The augmentation contributed by the second, third and fourth terms will actually

be needed only in cases for which k µ
a is time dependent (as in the cosmological

example characterized by (63), (64) and (66) as described above). The first term

is all that remains, i.e. the unadjusted total P ν
atot

will be conserved as it stands, in

the more familiar cases in which k µ
a is a generator of ordinary time translations (in

which case the conserved vector will be proportional to energy flux) or rotations (for

which it will be interpretable as angular momentum flux). It is to be emphasized

that the validity of the generalized total momentum conservation law (73) follows

just from the postulate that k µ
a is a Killing–Milne vector in the weak sense discussed

above (meaning just that its action preserves the background spacetime structure),

so that (unlike the results to be derived in the next section) it will be valid regardless

of whether or not the relevant material field configurations have any corresponding

symmetry property.

5. Fluid Symmetries and Generalized Bernoulli Theorems

In contexts for which the local gravitational coupling can be considered to be suf-

ficiently weak, it can be of interest to consider configurations of the generic kind

governed by (69) in which a material medium, such as the multiconstituent fluid

dealt with here, is not necessarily subject to the symmetries of the background

spacetime structure and the background gravitational field.

The purpose of the present section is to show how much stronger conclusions

can be drawn if the medium is itself invariant under the action of a Killing–Cartan

vector k µ
a of the kind characterized by the spacetime symmetry conditions (44),

(45) and the gravitational symmetry condition (54) discussed above.

In the case of a multiconstituent fluid, it can be seen from the formula (I-77) for

d̆πX
µ that in terms of boost potential, the corresponding symmetry conditions on

the momentum covectors will be given, according to the general principle (43), by

–La πX
ν = mX∇νβa . (75)
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Since, by its definition, the Lie derivative of the momentum covector will be

given by

–LaπX
µ = 2k ν

a ∇[νπX
µ] + ∇µ

(

k ν
a πX

ν

)

, (76)

we see from definition (I-161) of the vorticity that the symmetry condition on the

momentum will be expressible in the form

$X
µνk ν

a = ∇µBX
a , (77)

in which BX
a is a generalized momentum component that is defined by the formula

BX
a = k ν

a πX
ν − mXβa (78)

and that can be identified as a generalization of the historic Bernoulli scalar.

It is immediately obvious from (77) that we obtain a strong generalization of

the Bernoulli theorem to the effect that if the flow of some particular constituent

is irrotational, then the corresponding Bernoulli scalar will be uniform throughout,

in the sense of being independent of both space and time,

$X
µν = 0 ⇒ ∇νBX

a = 0 . (79)

In the case (of the kind originally considered by Bernoulli) of ordinary time

translation symmetry, as obtained by setting a = 0 with the specification (57), the

corresponding value,

BX

0 = πX
νeν , (80)

will be interpretable as the negative of an effective energy per particle. Similarly

in the case of an ordinary rotation symmetry, as obtained, for example by setting

a = 1 (for a rotation about the X1 axis) according to the specification (60) the

corresponding value,

BX

1 = πX
νkν

1 , (81)

will be interpretable as an effective angular momentum per particle. In the case

of a boosted translation symmetry along for example the X 1 axis, as obtained by

setting a = −1 in the specification (63), we obtain a generalized Bernoulli scalar

BX

−1 = k ν
−1π

X
ν − mXβ−1 , (82)

of a new kind, whose interpretation is not so elementary, due to the involvement of

the boost potential β−1.

In the general case, involving rotation or even transfer of matter between dif-

ferent constituents, it can be seen by combining (77) with the general force density

formula (I-164) that the gradient of the relevant generalized Bernoulli scalar along

the flow lines will be given by

n ν
X
∇νBX

a = k ν
a fX

ν + k ν
a πX

νDX
. (83)
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We thus obtain a generalized weak Bernoulli theorem to the effect that in the

conservative case of vanishing force density, the Bernoulli scalar will be constant

along each separate flow line,

fX
ν = 0 , D

X
= 0 ⇒ n ν

X
∇νBX

a = 0 . (84)

A useful alternative presentation of this generalized Bernoulli theorem can be

obtained by introducing generalized momentum current densities that are defined

for each separate constituent by the prescription

PX µ
a = BX

a nµ
X

. (85)

The theorem (83) can thereby be reformulated as a divergence law of the form

∇νPX ν
a = k ν

a fX
ν + βamXD

X
. (86)

It can be seen that the generalized total (non-gravitational) momentum density

(67) is related to the sum of the separate constituent contributions by

P µ
a − βaρµ =

∑

PX µ
a + Ψk µ

a . (87)

It was already made apparent by (71) in the preceding section that the combination

on the left of this equation will be conserved under rather general circumstances:

all that is required is that the system as a whole should be effectively isolated

from external influences (other than gravity) and that the generator k µ
a should be

a Killing–Cartan vector in the sense specified above. What has been shown in the

present section is that if we make the more restrictive postulate that the material

system itself is invariant, in the gauge adjusted sense characterized by (43), under

the action generated by the Killing–Cartan vector, and if we also postulate that the

separate force density contributions fX
µ (and hence also the separate decay rates

D
X
) all vanish individually, then (86) will be applicable so as to provide the much

stronger conclusion that each of the distinct contributions in the sum on the right

of (87) will be separately conserved.

6. Generalized Joukowski Theorem

As an application of the generalized Bernoulli theorem discussed in the previous

section, the Joukowski formula7 is extended to the case of multiconstituent fluid. We

shall derive the Magnus force arising on a perturbing vortex moving in an asymp-

totically uniform medium characterized by vanishing currents n
X

ν = 0 (asymptotic

values will be denoted by an overhead bar). The gravitational potential is supposed

to be unaffected by the perturbation. We shall follow closely a previous analysis in a

relativistic context.8 The fluid flow is supposed to be stationary thereby admitting

the ether vector eµ as a Cartan–Killing vector, and longitudinally invariant along

the uniform spacelike Cartan–Killing vector lµ (vortex symmetry axis) satisfying

lµtµ = 0.

The multiconstituent flow is described by the conservation law (33) ∇µT µ
totν

= 0.

Besides each of the currents are separately conserved ∇νn ν
X

= 0. It is further
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assumed that not only the total force density vanishes, but that each fluid compo-

nent is isolated fX
µ = n ν

X
$X

νµ = 0. It thus implies that the generalized vorticity

2-form $X
νµ will vanish whenever it is initially zero $X

νµ = 0. The framework

in which the Joukowski formula is derived, is restricted to such irrotational flows

(whether it is superfluid or not).

Consequently, from (79), the Bernoulli scalars associated with the corresponding

Killing vectors are uniform ∇νBX
a = 0. In particular, the following Bernoulli scalars

are constants:

BX

0 = πX
νeν = πXνeν , (88)

BX

−1 = πX
ν lν = πXν lν . (89)

The multiconstituent fluid is exerting a force (per unit length) on the vortex

given by

Fν =

∮

T σ
totν

?εσµdxµ , (90)

in which the “background” antisymmetric measure tensor is defined by

?εµν = εµνρσeρlσ . (91)

The conservation of the total stress energy momentum tensor allows one to

evaluate the integral along any closed circuit, which for convenience can be chosen

sufficiently far away from the vortex core for a linear expansion to be valid:

T σ
totν

= T
tot

σ
ν + δT σ

totν
+ O(δ2) . (92)

The force is zero by definition in the unperturbed uniform medium hence it reduces

to

Fν = δFν + O(δ2) . (93)

The linear deviation of the stress energy momentum tensor from the uniform

background value is expressible as

δT σ
totν

=
∑

(

πX
ν δnσ

X
+ n

X

σ δπX
ν − n

X

ρ δπX
ρ δσ

ν

)

. (94)

The force per unit length to lowest order is therefore given by δFν =
∮

δT σ
totν

?εσµdxµ, i.e.

δFν =
∑

(

πXν

∮

δnσ
X

?εσµdxµ + 2n
X

σ

∮

δπX
[ν

?εσ]µdxµ

)

. (95)

It is then worthwhile to notice as a consequence of the Bernoulli theorem that

the variation of the momentum is purely orthogonal to the vortex

⊥σ
ν δπX

σ = δπX
ν , (96)

where ⊥σ
ν is the operator of projection orthogonal to the vortex (i.e. orthogonal

to the Killing vectors). The spacetime metric δσ
ν is decomposible into the sum
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of the operators of projection parallel ησ
ν and orthogonal ⊥σ

ν to the vortex. The

contravariant antisymmetric measure tensor ?εµν is introduced by

?εµν = tρlσεµνρσ . (97)

The covariant component lσ of the Killing vector is well-defined since this vector is

spacelike. The projection operators are given by

ησ
ν = eσtν + lσlν , (98)

⊥σ
ν = −?εµσ ?εµν . (99)

The force per unit length therefore becomes

δFν =
∑

(

πX
ν

∮

δnσ
X

?εσµdxµ + 2n
X

σ

∮

δπX
ρ ⊥ρ

[ν
?εσ]µdxµ

)

. (100)

Using the following identity,

⊥ρ
[ν

?εσ]µ = −?ενσ ⊥ρ
µ , (101)

the force per unit length acting on the vortex simplifies to

δFν =
∑

(

πX νδD
X

+ n
X

σ ?εσνδCX
)

, (102)

in which the momentum circulation integral CX and the current outflux integral D
X

are defined by

D
X

=

∮

nσ
X

?εσµdxµ , (103)

CX =

∮

πX
ν dxν . (104)

The current and vorticity conservation laws ensure that CX and D
X

respectively,

do not depend on the integration closed path. Therefore the circuit can be chosen

to lie at a very large distance from the vortex core so that the force is exactly given

by the linear perturbation term. In cases for which there is no current creation in

the vortex core, the current outflux integral will simply vanish D
X

= 0 and since

the asymptotic values of these two integrals must also be equal to zero the force

per unit length acting on the vortex is eventually given by

Fν = ?εσν

∑

CXn
X

σ . (105)

7. Virial Moment Theorems for Isolated System

The preceding analysis has been essentially local, but of course whenever one is

concerned with a system — such as a star model — that is confined within a

compact region it is of particular interest to consider global quantities, particularly

those that are subjected to simple evolution equations or are actually conserved.
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A specially noteworthy example is of course the total energy E
tot

which is de-

finable as a function of time by a space integral that is expressible in the form

E
tot

=

∫

U
tot

d3X , (106)

with respect to standard Aristotelian coordinates {X 0 , X i} of the kind described

in Section 2 of Ref. 1, with time coordinate X0 = t, and space coordinates X i of

ordinary Cartesian type, so that the 3-dimensional Euclidean metric components

γij are those of a 3 by 3 unit matrix, while the time covector has components t
0

= 1,

ti = 0, and the corresponding ether velocity vector has components e 0 = 1, ei = 0.

It is evident from the local energy momentum conservation law (33) that the

time evolution of this quantity can be expressible as the space integral of a diver-

gence in the form

d

dt
E

tot
=

∫

∇i T i
tot 0

d3X . (107)

Using Green’s theorem to convert this to an asymptotic surface integral at large

distance, it can be seen to follow that for an isolated system the energy will actually

be conserved, i.e. we shall simply have

d

dt
E

tot
= 0 , (108)

provided that (as is always possible in such a case) the gauge for the gravitational

potential φ in the formula (29) for the external field contribution T i
grf 0

is chosen in

accordance with the usual convention that it should tend to zero at large distances.

(This condition automatically entails that φ will fall off as the inverse of the radial

distance, a requirement which is sufficient to get rid of the boundary term that

would otherwise be left over.)

The foregoing total energy conservation law depends only on the time pro-

jected part of the complete local energy momentum conservation law (33), which

can be decomposed in terms of separate energy density and 3-momentum density

components

U
tot

= −T 0

tot 0
, Π i = T 0i

tot
= γikT 0

totk
, (109)

in the form

∇
0
U

tot
= ∇iT

i
tot 0

, (110)

(the part from which (107) is derived) and

∇
0
Π i = −∇jT

ji
tot

= −γik∇jT
j

totk
. (111)

(in which, as remarked above there is no need to distinguish between Π i and Π i
tot

since there is no purely gravitational 3-momentum contribution). The space pro-

jected part, namely the local 3-momentum conservation law (111) is particularly
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informative when used in conjunction with the conservation law (I-108) for the

Newtonian mass current, whose time and space components

ρ0 = ρ , ρi = Π i (112)

must satisfy

∇
0
ρ = −∇i ρi . (113)

By combining this with (111) we obtain a noteworthy second order differential

relation,

∇
0
∇

0
ρ = ∇i∇jT

ij
tot

, (114)

that may appropriately be referred to as the local Newtonian virial equation, since,

as will be shown below, it is what ultimately accounts for various older (specialized)

and newer (more general) variants of what is commonly referred to by the term

“virial theorem.”

The relevant global applications of the foregoing local conservation laws involve

global mass–moment integrals of the form

M =

∫

ρX d3X (115)

and momentum–moment integrals of the form

J =

∫

Π i Yi d3X , (116)

where X and Yi are weighting factors that are constructed as fixed (i.e. time inde-

pendent) given functions of the Cartesian space coordinates X i. In the same way

as (108) was obtained by applying (110) to (106) using Green’s theorem to get rid

of a divergence, it can be seen that — for a locally confined system — application

of (113) in (115) gives

d

dt
M =

∫

Π i∇iX d3X . (117)

In order for application of (111) in (116) to provide the analogous relation

d

dt
J =

∫

T ij
tot
∇iYj d3X , (118)

it is not enough to require that the material system be locally confined: in order

for Green’s theorem to be able to get rid of the relevant divergence contribution

the weighting factor Yi must satisfy an appropriate admissibility restriction. Since,

according to (29), the components of the gravitational field contribution T ij
grf

will

fall off as the fourth power of the radial distance from the material source, it can be

seen that the criterion for admissibility in (118) is that the components Yi should

grow more slowly than the square of the radial distance. Subject to the proviso

that X should satisfy this admissibility condition when one makes the substitution

Yi = ∇iX , it can be seen by combining (117) and (118) — or directly from the
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local virial relation (114) — that we shall obtain a generic global virial relation of

the form

d2

dt2
M =

∫

T ij
tot

∇i∇jX d3X . (119)

The simplest example of the application of the foregoing formulae is of course to

the case of the total mass M , which is obtained simply by taking the weighting

factor X to be unity. Thus by setting

X 7→ 1 ⇒ M 7→ M , ∇iX 7→ 0 , (120)

we see that (115) and (117) reduce respectively to the definition and conservation

law for the total mass as given by

M =

∫

ρ d3X ,
d

dt
M = 0 . (121)

The next simplest possibility is the case of the dipole moment, which is obtained

by taking the weighting factor to be linearly dependent on the Cartesian space

coordinates X i. Thus in particular the dipole moment in the direction of, say, the

X3 axis is obtained by just taking the weighting factor X to be X 3 . Thus by setting

X 7→ X3 ⇒ M 7→ D3 , ∇iX 7→ γ3

i , ∇i∇jX 7→ 0 , (122)

we see that (115) and (117) reduce respectively to the definition and variation law

for the dipole moment component D3 as given by

D3 =

∫

ρ X3 d3X ,
d

dt
D3 =

∫

Π3 d3X , (123)

where the latter integral is interpretable as the ordinary linear 3-momentum in the

direction of the X3 axis, whose conservation is now given by the relevant application

of (118), or equivalently of (119), which can be seen to reduce simply to

d2

dt2
D3 = 0 . (124)

This particular application will of course reduce to a triviality if we exploit the

freedom to use the centre of mass frame characterized by the condition that the

dipole moment simply vanishes.

A less trivial application is to the case of angular momentum, whose components

are obtained by taking the weighting factor Yi to be given by the corresponding

components of the Killing–Yano 2-form (61). Thus in particular the angular momen-

tum J
3

about the X3 axis will be obtained by identifying the weighting components

Yi with the Killing–Yano components Yi3 = εi3kXk . Thus by setting

Yi 7→ Yi3 ⇒ J 7→ J
3
, ∇iYj 7→ εij3 , (125)

we see that (116) and (118) reduce respectively to the definition and the conserva-

tion law for this angular momentum component, as given by

J
3

= εij3

∫

X i Πjd3X ,
d

dt
J

3
= 0 , (126)
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in which the last step, namely the vanishing of the time derivative, results from the

stress tensor symmetry property

T [ij]
tot

= 0 , (127)

which holds as a consequence of the corresponding property (22) of the material

contribution, and of the manifest symmetry of the gravitational contribution (29).

The familiar conclusion that the total angular momentum of an isolated Newto-

nian system will be conserved can alternatively be interpreted as an immediate

global consequence, via Green’s theorem, of the relevant particular application of

the general local conservation law (74).

Having seen how mass and angular momentum conservation laws of the usual

kind can immediately be recovered as particularly simple special cases for which

the weighting factor is uniform or linearly dependent on the Cartesian space coor-

dinates — so that the term on the right of (119) will drop out — we now come

to the less trivial category of applications for which the term “virial theorem” is

most commonly employed,9 namely cases for which the weighting factor X has

homogeneous quadratic dependence on the Cartesian space coordinates X i. The

simplest such possibility is the isotropic case obtained by taking X proportional to

the square of the radial distance r from the center as given (in a Cartesian system

with origin at the center of mass) by

r2 = γijX
iXj (128)

while another obviously important special case is that for which X is taken to be

proportional to the square of the distance $ from, say, the X 3 axis, as defined by

$2 =
(

γij − δ3

iδ
3

j

)

X iXj = (X1)2 + (X2)2 . (129)

The isotropic case obtained simply by identifying X with r2 is that for which

M is just the ordinary scalar quadrupole moment I . Thus by setting

X 7→ r2 ⇒ M 7→ Q , ∇i∇jX 7→ 2γij , (130)

one sees from the generic virial relation (119) that the scalar quadrupole moment

Q =

∫

ρ r2 d3X (131)

will satisfy a time evolution equation of the form

d2

dt2
Q = 2

∫

T i
tot i d3X . (132)

It evidently follows that for a stationary (i.e. time independent) configuration the

integral on the right of this equation must vanish.

The axial case obtained by identifying X with $2 is that for which M is just

the moment of inertia moment I
3

about the X3 axis. Thus by setting

X 7→ $2 ⇒ M 7→ I
3
, ∇i∇jX 7→ 2

(

γij − δ3

iδ
3

j

)

, (133)
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one sees from the generic virial relation (119) that this moment of inertia

I
3

=

∫

ρ $2 d3X (134)

will satisfy a time evolution equation of the form

d2

dt2
I
3

= 2

∫

(

T 11

tot
+ T 22

tot

)

d3X . (135)

It evidently follows again that for a stationary (i.e. time independent) configuration

the integral on the right of this equation must vanish.

The preceding special isotropic and axial cases can be considered as combi-

nations of the separate components of the corresponding tensorial theorem — as

obtained by substituting X iXj in place of X in (117) and (119) — according to

which the first and second time derivatives of the generic quadrupole moment com-

ponent

Qij =

∫

ρ X iXj d3X (136)

will satisfy equations of the form

d

dt
Qij = 2

∫

Π(iXj) d3X (137)

and

d2

dt2
Qij = 2

∫

T ij
tot

d3X . (138)

Just like the stationary case, for which the integrals on the right of (137) and (138)

must vanish, the time dependent case is also of particular interest because it is the

third time derivative of the trace free part of the quadrupole moment tensor that

provides the source of gravitational radiation in the Newtonian (weak field, low

velocity) limit of general relativity.

The foregoing conclusions, and in particular the scalar quadrupole evolution

equation (132), can be construed as a concise general statement of what is com-

monly referred to — in more detailed applications to particular well-known cases

— as the “virial theorem”. The most widely familiar version9 applies just to the

case of a single constituent perfect fluid, but in a recent study of ellipsoidal con-

figurations Sedrakian and Wasserman10 have provided a version applying to cases

in which there is a pair of independently moving fluid constituents. Our present

— formally very simple — result (132) actually goes further, not just by allowing

for the possibility of more than two constituents, but also, less trivially, by includ-

ing allowance for the effect of entrainment whereby the strong coupling between

the constituents modifies the momenta of the constituent particles whose effective

masses may deviate substantially from their ordinary rest masses.

To relate our concise new general purpose “virial theorem” (132) to the more

specialized results that are already well-known, it is instructive to consider the
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distinct contributions that are involved. As as start, it can be seen from (38) that

the total energy (106) can be expressible in the form

E
tot

= E
mat

+ E
grt

, (139)

where the purely material contribution is defined by

E
mat

=

∫

U
mat

d3X , (140)

and the total gravitational binding energy contribution is defined by

E
grt

= E
grf

+ E
pot

=

∫

U
grt

d3X , (141)

in which

E
grf

=

∫

U
grf

d3X =
1

8πG

∫

gigi d3X , (142)

and

E
pot

=

∫

U
pot

d3X =

∫

φρ d3X . (143)

For a confined source, it can be seen from (40) using Green’s theorem that the total

gravitational contribution (141) will be related to the separate gravitational field

contribution (142) and gravitational potential contribution (143) by

E
grt

= −E
grf

=
1

2
E

pot
. (144)

In a similar manner, using the observation that

T i
grti

= −U
grf

, (145)

it can be seen that the integral on the right hand side of (119) can be split as a

sum of a purely material contribution and a gravitational contribution, in which

(again using Green’s theorem) the latter works out to be the same — for a confined

source — as the corresponding contribution to the energy, i.e. one obtains
∫

T i
toti

d3X =

∫

T i
mati

d3X + E
grt

. (146)

The material energy contribution can evidently be further decomposed as

E
mat

= E
kin

+ E
int

, (147)

where the separate kinetic and internal contributions are expressible in terms of

the densities given by (18) as

E
kin

=

∫

U
kin

d3X , E
int

=

∫

U
int

d3X (148)

of which the latter will be expressible in terms of the rest frame chemical potentials

χX introduced in (19) as

E
int

=
∑

∫

n
X
χX d3X −

∫

Ψ d3X . (149)
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The corresponding decomposition for the material contribution in (145) has the

form
∫

T i
mati

d3X =

∫

T i
kini d3X +

∫

T i
inti

d3X , (150)

in which the kinetic contribution can be seen from (15) and (18) to be given by
∫

T i
kini d3X = 2E

kin
, (151)

while the internal contribution can be seen from (16) to be given by
∫

T i
inti

d3X = 3

∫

Ψ d3X +
∑

∫

n i
X
χX

i d3X . (152)

Putting the separate pieces together, it can be seen that the integral in the

formulation (132) of the generalized “scalar virial theorem” — and that in any

stationary equilibrium configuration must therefore vanish, i.e.
∫

T i
toti

d3X = 0 , (153)

— will be expressible by
∫

T i
toti

d3X = E
grt

+ 2E
kin

+ 3

∫

Ψ d3X +
∑

∫

n i
X
χX

i d3X . (154)

In the combination on the right hand side — which must vanish for a stationary

equilibrium configuration — it is to be remarked that the first two terms (the total

gravitational energy plus twice the ordinary kinetic energy) are of the kind that is

traditionally familiar. As compared with the multiconstituent version given recently

by Sedrakian and Wasserman10 for the idealized case in which mutual entrainment

between the constituents was ignored, the difference here consists firstly of the use

of the undecomposable pressure function Ψ in place of a sum (of the form
∑

P
X
) of

ordinary pressure contributions from the distinct constituents, and secondly of the

inclusion of the final term involving the previously ignored entrainment momenta

χX

i themselves.

Before concluding, we wish to point out that the homogeneously quadratic

category that has been discussed in detail immediately above is not the only useful

category of non-trivial applications of our generic virial theorem (119). Another

category worth consideration is that of homogeneously first (as opposed to second)

order mass moments. Strictly linear dependence on the Cartesian space coordinates

leads merely to the trivial dipole moment case discussed above, but a no less natural,

and much more interesting, alternative possibility is that of the isotropic homoge-

neously first order (but non-linear) case obtained by setting X = r, while the next

most obviously interesting possibility is that of the cylindrical homogeneously first

order (but non-linear) case obtained by setting X = $.

For the first of these, namely the isotropic first order case, we have

X = r ⇒ ∇i∇jX = r−1(γij − νriνrj) , (155)
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where ν i
r is the radial unit vector as defined by

ν i
r = r−1X i . (156)

Since, in terms of standard spherical coordinates r, θ, ϕ, the volume element will

be given by dX1 dX2 dX3 = r2 sin θ dr dθ dϕ, the isotropic homogeneously linear

virial theorem obtained by substituting (155) in (119) will be expressible as

d2

dt2

∫

ρ r3 sin θ dr dθ dϕ =

∫

(

T i
toti

− T ij
tot

νr iνr j

)

r sin θ dr dθ dϕ . (157)

An even simpler relation is obtainable for the cylindrical first order case, for

which we have

X = $ ⇒ ∇i∇jX = $−1νϕ iνϕ j , (158)

where ν i
ϕ is the unit vector in the direction of the relevant axial Killing vector (60),

namely

ν i
ϕ = $−1k i

3 , (159)

so that its components will be given by ν 1
ϕ = −X2/$, ν 2

ϕ = X1/$, ν 3
ϕ = 0.

This leads to what is interpretable as the Newtonian limit11 of a result originally

derived in a relativistic context by Bonazzola.12 In terms of standard cylindrical

coordinates, as specified by X1 = $ cosϕ, X2 = $ sin ϕ, X3 = z, the volume

element will be given by dX1 dX2 dX3 = $ d$ dz dϕ. It can thus be seen that the

cylindrical homogeneously linear virial theorem obtained by substituting (158) in

the generic relation (119) will take the form

d2

dt2

∫

ρ $2 d$ dz dϕ =

∫

T ij
tot

νϕ iνϕ j d$ dz dϕ . (160)

More particularly, in the stationary axisymmetric case, for which the left hand side

vanishes and for which the ϕ integration is trivial, (160) reduces to the 2-dimensional

integral relation
∫

T ij
tot

νϕ iνϕ j d$ dz = 0 , (161)

that was originally derived by Gourgoulhon and Bonazzola,11 in which it can be

seen from (29) that the gravitational contribution to the integrand can be separated

out in a decomposition that takes the form

T ij
tot

νϕ iνϕ j = Tij ν i
ϕν j

ϕ − U
grf

, (162)

as a consequence of the axisymmetry.

We conclude by emphasising that, like the ordinary virial theorem (153), the

Bonazzola theorem (161) is a particular example of the condition
∫

T ij
tot

∇i∇jX d3X = 0 , (163)
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that can be seen from (119) to be a generic requirement for any stationary equi-

librium configuration for all admissible choices of the weighting factor X . It is to

be recalled that T ij
tot

is the total of all material and gravitational stress contribu-

tions, and that, for the purpose of this generic theorem, the relevant admissibility

criterion is that X should be any given function of the Cartesian space coordinates

whose gradient components ∇iX increase more slowly than a quadratic function

of these coordinates at large distance (this condition would fail for a substitution

of the form X 7→ r3, but it is evidently satisfied by the substitution X 7→ r2 that

leads to the ordinary virial theorem, and a fortiori by the substitution X 7→ $

that leads to the Bonazzola virial theorem). Whereas the individual terms in the

expansion (152) have forms that depend on the specific nature of the multicon-

stituent fluid models developed above, on the other hand, the generic relation (163)

and its dynamical generalization (119) depend only on the generic form of the en-

ergy momentum and mass conservation laws (110), (111) and (113), which should

hold for any (complete) Newtonian continuum model. These generally applicable

laws are all that is needed for the derivation of the local virial equation (114) that

underlies the global relation (119). The generic virial equilibrium relation (163) is

just the global consequence of the local equilibrium condition

∇i∇jT
ij

tot
= 0 (164)

that obviously holds as the stationary specialization of the local virial equation,

namely the dynamical relation (114), whose importance — as an easily memorable

law that must be satisfied by any Newtonian continuum configuration — has not

been adequately recognized hitherto.
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Appendix. Noether Identities in Newtonian Theory

Let us consider the generic case of a Newtonian model characterized by a total

action density that is a sum

Λ
tot

=
∑

a

Λa (A.1)

of contributions labelled by some index a. This includes the kind of model dealt

with in the preceding work which can be described by taking a to range over the

four values specified by the labels “kin”, “int”, “pot” and “gra”. In what follows we

shall use the symbol ∼= to denote equivalence modulo a spacetime divergence. The

content of the action principle is thereby expressible as the postulate that when the

relevant field equations are satisfied, any “admissible” infinitesimal variation of the

relevant dynamical field variables will give rise to a corresponding total variation



June 1, 2005 12:29 WSPC/142-IJMPD 00682

Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars 743

δΛ
tot

that is equivalent to zero in this sense, i.e. δΛ
tot

∼= 0, so that its spacetime

integral will vanish by Green’s theorem for any variation with compact support.

The purpose of the present section is to consider the effects of more general —

not necessarily “admissible” — variations of the relevant dynamical fields as well

as variations of the various spacetime background fields on which the complete

specification of the action depends. For such more general variations, the total

action density variation will satisfy a relation of the form

δΛ
tot

∼=
∑

a

δ‡Λa +
∑

a

δ]Λa , (A.2)

in which δ‡ denotes the contribution from the variations of the background fields

and δ] denotes the contribution from any inadmissible parts of the variations of the

dynamical fields.

In the technically simpler case of a relativistic model the relevant spacetime

background variation would be fully determined by the variation of the spacetime

metric gµν , or equivalently of its contravariant inverse gµν . However, in the Newto-

nian case under consideration here, it is not sufficient to know the variation of the

corresponding contravariant space metric γµν . It will be necessary to know as well

the associated variation of the corresponding preferred time gradient tµ. To deal

with more elaborate models, the variation of the linear connection might also be

involved, but this will not be necessary for models of the simple kind considered

here. However to deal with the Galilean gauge dependent contribution Λ
kin

it will

also be necessary to take into account the variation of the chosen ether frame vector

eµ. Thus the relevant background field variations will be given by expressions of

the form

δ‡Λa =
∂Λa

∂γµν
δγµν +

∂Λa

∂tµ
δtµ +

∂Λa

δeµ
δeµ , (A.3)

in which the final term will drop out for gauge independent contributions such as

Λ
mat

, Λ
pot

and Λ
grf

. In the models under consideration, the relevant dynamical fields

are the gravitational potential, φ, for which arbitrary variations are admissible, and

the current vectors nµ
X

whose admissible variations are restricted, so that a generic

variation δnµ
X

may include an inadmissible part δ]nµ
X

that provides a contribution

of the form

δ]Λa =
∂Λa

∂nµ
X

δ]nµ
X

. (A.4)

As in the (for this purpose simpler) relativistic case, a standard procedure13

for the derivation of useful Noether type identities is to consider variations of the

trivial kind generated by an arbitrary displacement vector field, ξµ, say. This means

that the variation of each (background or dynamical) field variable will be given by

the negative of its Lie derivative. The relevant formulae are thus given by

−δΛa = ~ξ–LΛa ≡ ξρ∇ρΛa, (A.5)
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−δγµν = ~ξ–L γµν ≡ ξρ∇ργ
µν − 2γρ (µ∇ρξ

ν) , (A.6)

−δtµ = ~ξ–L tµ ≡ ξρ∇ρtµ + tρ∇µξρ , (A.7)

−δeµ = ~ξ–L eµ ≡ ξρ∇ρe
µ − eρ∇ρξ

µ (A.8)

and

−δnµ
X

= ~ξ–Lnµ
X
≡ ξρ∇ρn

µ
X
− n ρ

X
∇ρξ

µ . (A.9)

In view of the uniformity properties (I-16) and (I-18) of the unperturbed background

fields, we shall be left with

δγµν = 2γρ (µ∇ρξ
ν) , (A.10)

δtµ = −tρ∇µξρ , (A.11)

δeµ = eρ∇ρξ
µ , (A.12)

and it can be seen from the expression (I-86) for the form of an admissible current

variation that the only remaining (i.e. inadmissible) contribution from (A.9) will

be given simply by

δ]nµ
X

= nµ
X
∇ρξ

ρ . (A.13)

Since (using the notation introduced in (A.2) for equivalence modulo a diver-

gence) the variation (A.5) will evidently satisfy

δΛa
∼= Λa∇ρξ

ρ , (A.14)

it can be seen that the terms in (A.2) can be regrouped on the left to give a relation

of the simple form

T µ
tot ν∇µξν ∼= 0 , (A.15)

in which the quantity that will be interpretable as the relevant total stress momen-

tum energy density tensor can be read out in the form

T µ
tot ν =

∑

a

T µ
a ν , (A.16)

as the sum of contributions given by the formula

T µ
a ν = Ψaδµ

ν − 2
∂Λa

∂γρν
γρµ +

∂Λa

∂tµ
tν −

∂Λa

∂eν
eµ , (A.17)

in which the relevant generalized pressure contribution Ψa is given in terms of the

corresponding momentum contributions,

π X
a µ =

∂Λa

∂nµ
X

, (A.18)

by

Ψa = Λa −
∑

π X
a µnµ

X
. (A.19)
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It is to be remarked that due to the restrictions

tν δγνµ = −γµν δtν , tν δeν = −eν δtν , (A.20)

resulting from (I-3) and (I-16), there is some gauge ambiguity in the specification

of the partial derivative coefficients introduced in (A.3) but it can easily be checked

that the stress momentum energy contributions T µ
a ν specified by the combination

(A.17) will be physically well-defined in the sense of being unaffected by the choice

adopted in (A.2).

By a further equivalence transformation (modulo a divergence) it can be seen

that (A.15) can be converted to the form

ξν∇µT µ
tot ν

∼= 0 . (A.21)

Since this must hold for an arbitrary vector field ξµ, and hence in particular for

a displacement field with compact support in any small spacetime neighborhood,

it can be seen by integrating over such a neighborhood (so that the divergence

ambiguity in the equivalence relation cancels out by Green’s theorem, as in the

usual derivation of the dynamical equations from the action principle) that the

coefficient of ξµ in (A.21) must vanish, i.e. we obtain a total energy momentum

conservation law of the form

∇µT µ
tot ν = 0 . (A.22)

It remains to show that the conserved total stress momentum energy density

tensor T µ
tot ν obtained by the foregoing procedure is actually the same as the tensor

T µ
tot ν introduced in (30)

The relation (A.22) is not an identity in the strict sense, since its derivation

depends on the dynamical field equations obtained from the action principle. To

obtain a purely mathematical identity it is necessary to take account of the un-

restrained variations of all relevant field variables. In the application with which we

are concerned here this includes not just the background field variations involved

in (A.3) and the variations of the currents n µ
X

but also the variations of the gravita-

tional potential φ and its gradient, so that the complete generic expression for the

variation of an action density contribution Λa will have the form

δΛa = δ‡Λa +
∑

π X
a µ δnµ

X
+

∂Λa

∂φ
δφ +

∂Λa

∂(φ,µ)
δ(φ,µ) . (A.23)

For variations generated, as before, by an arbitrary displacement vector field ξµ, we

can again use the background field variation formulae (A.10), (A.11) and (A.12),

together with the corresponding dynamical field variation formulae (A.9) and

δφ = −~ξ–Lφ = −ξµφ,µ , (A.24)
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we thus obtain a relation of the form

ξν

(

∇νΛa −
∑

X

π X
a µ ∇νnµ

X
−

∂Λa

∂φ
∇νφ −

∂Λa

∂(φ,µ)
∇µ∇νφ

)

=

(

∂Λa

∂(φ,µ)
∇νφ −

∑

X

π X
a ν nµ

X
− 2

∂Λa

∂γρν
γρµ +

∂Λa

∂tµ
tν −

∂Λa

∂eν
eµ

)

∇µξν , (A.25)

which will be satisfied as an identity in the sense of being independent of the

dynamical field equations. Since it is possible to choose both ξν and its derivative

∇µξν independently at any given point, it follows that the corresponding coefficients

must vanish. Thus from the left hand side of (A.25) we obtain the obvious identity

∇νΛa =
∑

π X
a µ∇νnµ

X
+

∂Λa

∂φ
∇νφ +

∂Λa

∂(φ,µ)
∇µ∇νφ , (A.26)

while from the right hand side we obtain an identity of the less trivial form

∂Λa

∂(φ,µ)
∇νφ −

∑

π X
a ν nµ

X
− 2

∂Λa

∂γρν
γρµ +

∂Λa

∂tµ
tν −

∂Λa

∂eν
eµ = 0 . (A.27)

A noteworthy special case is that of the internal contribution Λ
int

, which depends

neither on the gravitational potential φ (unlike Λ
pot

) nor on the ether frame vector

eµ (unlike Λ
kin

), so that when it is substituted for Λa in (A.27) the first and the last

term will both drop out. Contraction with tµ and γνσ can then be used to eliminate

the other terms at the end, leaving a result that can be recognized as the simple

identity (I-143) that was quoted above, while the following identity (I-144) can

similarly be derived by performing an antisymmetrization after contracting with

just γνσ .

Quite generally, the Noether identity (A.27) can be used to replace the formula

(A.17) by the more explicit and manifestly gauge independent expression

T µ
a ν = Ψaδµ

ν +
∑

π X
a ν nµ

X
−

∂Λa

∂(φ,µ)
∇νφ . (A.28)

With the aid of (A.26) it can be directly verified that each such contribution will

satisfy a divergence identity of the form

∇µT µ
a ν =

∑

fX
a ν +

δΛa

δφ
∇νφ , (A.29)

in which the Eulerian derivative has a definition of the usual form

δΛa

δφ
=

∂Λa

∂φ
−∇µ

(

∂Λa

∂(φ,µ)

)

, (A.30)

while the force density contributions are given by an expression whose form

fX
a µ = 2n ν

X
∇[νπX

a µ] + πX
a µ∇νn ν

X
(A.31)

is analogous to that for the combined force densities (I-159).
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By summing over these separate contributions we obtain the corresponding

formula

T µ
tot ν = Ψ

tot
δµ

ν +
∑

X

π X

tot ν nµ
X
−

∂Λ
tot

∂(φ,µ)
∇νφ , (A.32)

for the total stress momentum energy density tensor, where the corresponding total

pressure function and momenta are given by

Ψ
tot

=
∑

a

Ψa , π X

tot ν =
∑

a

π X
a ν , (A.33)

while there will be an analogous expression

f X

tot ν =
∑

a

f X
a ν , (A.34)

for the total non-gravitational force density exerted on each constituent.

In the application considered in the preceding work the purely gravitational

action density Λ
grf

given by (25) provides no contribution to the momenta, i.e. we

shall have π X

grf ν = 0, and hence Ψ
grf

= Λ
grf

so we can make the identifications

π X

tot ν = πX
ν , f X

tot ν = fX
ν and Ψ

tot
= Ψ + Λ

grf
in which it is to be recalled that we

use a blank label to indicate the sum over all values of a except the gravitational

contribution “gra”, i.e. for the sum over the values “kin”, “int” and “pot”, which is

the only part that is relevant if (as in the Cowling approximation) one is concerned

just with evolution in a fixed gravitational background, but not with the effects of

self gravity. It can thus be verified that the definitions introduced in the systematic

mathematical procedure developed in this appendix are entirely consistent with

those introduced ad hoc in the main part of the text. In particular, it can easily

be seen from (A.32) that the general purpose prescription provided by (A.17) and

(A.18) for T µ
tot ν leads to a result that is in exact agreement with what is given

by the formula (30) that was obtained from more specific physical considerations

in the main part of the text, while similarly by summing over the index a in the

identity (A.31) one recovers a result that can be seen to agree with the previously

quoted divergence formula (3).
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