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As a follow up to papers dealing firstly with a convective variational formulation in
a Milne–Cartan framework for non-dissipative multi-fluid models, and secondly with
various ensuing stress energy conservation laws and generalized virial theorems, this
work continues a series showing how analytical procedures developed in the context of
General Relativity can be usefully adapted for implementation in a purely Newtonian
framework where they provide physical insights that are not so easy to obtain by the
traditional approach based on a 3 + 1 space time decomposition. The present paper
describes the 4-dimensionally covariant treatment of various dissipative mechanisms,
including viscosity in non-superfluid constituents, superfluid vortex drag, ordinary resis-
tivity (mutual friction) between relatively moving non-superfluid constituents, and the
transvective dissipation that occurs when matter is transformed from one constituent to
another due to chemical disequilibrium such as may be produced by meridional circula-
tion in neutron stars. The corresponding non-dissipative limit cases of vortex pinning,
convection and chemical equilibrium are also considered.

Keywords: Newton–Cartan; hydrodynamics; dissipative fluids; superfluid drag; mutual
friction; viscous forces; transvective forces.

1. Introduction

This article continues the development1,2 of a coherent fully covariant approach

to the construction and application of Newtonian fluid models of the more gen-

eral kind required in the context of neutron star phenomena in cases for which

it is necessary to allow for independent motion of neutronic and protonic con-

stituents. Generalizing the approach that was originally introduced3 for the special

case of Landau’s two-constituent superfluid model, the preceding papers dealt with

idealized perfectly conservative models, for which a strictly variational formulation

is available. In a complementary treatment by Prix,4 it has been shown how this

covariant variational formulation can be translated into terms of the familiar kind
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of 3+1 direct product structure of space with time that has traditionally been used

in a non-relativistic approach, and also how it can be extended to allow for dissipa-

tive effects — such as chemical reactions and mutual resistivity between relatively

moving currents of thermal and other kinds — while retaining as much as possible

the convenient5,6 mathematical machinery provided by the variational approach.

In the same spirit, but continuing within a fully covariant framework, the purpose

of the present paper is to extend our treatment to allow for a wider range of dissi-

pative mechanisms of the kind7 likely to be relevant in neutron stars, particularly

those due to the presence of superfluid vortices.

In the non-dissipative applications considered in the preceding articles1,2 the

status of any entropy current 4-vector sµ that may have been involved was effec-

tively the same as that of the other relevant conserved currents with 4-vectors n µ
X

=

n
X
uµ

X
for corresponding number density n µ

X
and unit flow vectors uµ

X
designated by

various values of the chemical index label X. However, in the dissipative applications

to be considered here, the entropy density s and the (no longer conserved) entropy

current

sµ = suµ
∅ (1)

will have a privileged role, characterizing a corresponding local thermal rest frame

specified by a unit 4-vector u µ

∅ for which the (barred) zero value, X = ∅, of the

chemical index will be reserved, i.e. we shall set n∅ = s, nµ
∅ = sµ.

While the other (particle) currents may still either be conserved, in the sense

of having ∇µnµ
X

= 0 for certain values of the chemical index X, or else may have

divergence ∇µnµ
X

of unrestricted, positive or negative, sign — corresponding to the

possibilities of particle creation or destruction — the second law of thermodynamics

stipulates that entropy should never be destroyed, which means that in an entirely

self contained treatment we must always have

∇µsµ ≥ 0 , (2)

i.e. ∇µnµ
∅ can never be negative. In some contexts8 it may however be convenient

to work in terms of an open (i.e. not completely self contained) model in which,

although not actually destroyed, entropy is nevertheless effectively lost from the

system by some local heat removal mechanism — such as the URCA (neutrino–

antineutrino pair creation) process in a neutron star core — in which case the rele-

vant remaining entropy current sµ would not necessarily have to respect the restric-

tion (2), but would be subjected to the modified inequality (23) that is given below.

In the preceding paper2 it was shown how, in a system governed by a multi-

fluid action variation principle, the relevant (kinetic, internal, and gravitational)

Lagrangian action contributions give rise to corresponding variationally defined

stress energy contributions that combine to give a total T µ
totν

which satisfies a

Noether type identity of the form

∇µT µ
totν

=
∑

X

fX
µ , (3)
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in which, for each value of the chemical index X, the 4-covector fX
µ denotes the

variationally defined non-gravitational force density acting on the corresponding

constituent. The strictly conservative case considered in the preceding work was

characterized by dynamical equations given, according to the variation principle,

just by the requirement that each of the separate force densities fX
µ should vanish.

The purpose of the present paper is to extend the analysis to a more general category

of dynamical equations, whereby the force densities are not required to vanish

but are given by non-conservative contributions from dissipative mechanisms of

three different kinds, namely as viscosity, resistance against relative motion and

transfusion between the various chemical constituents.

Although the suspension of the variation principle leaves a considerable amount

of latitude in the way the various kinds of dissipative force may be specified, the

admissible forms of force law are considerably restricted by the requirement of

compatibility with the second law of thermodynamics as embodied, for a self con-

tained system, in the inequality (2). As in the preceding papers1,2 our work will be

guided by previous experience9–11 with analogous dissipative effects in a General

Relativistic framework, which (contrary to what is commonly supposed) is actually

simpler for many purposes, and particularly for the treatment of electromagnetic

effects, which are not included (except as possible external background forces) in

the present strictly Newtonian analysis.

2. Viscous Stress

The first of the dissipative mechanisms that we need to consider — and the only

one that will occur in a single constituent fluid model — is that of viscosity, whose

effect will be interpretable in terms of a gross stress energy density tensor

T µ
groν = T µ

totν
+

∑

X

τX µ
ν , (4)

in which the total T µ
totν

provided by the previously considered action contributions2

is supplemented further by viscous stress contributions τX µ
ν that are not obtained

from the Lagrangian action but that are included to allow for deviations (from

what would otherwise be a local thermal equilibrium state) due to space gradients

of the corresponding flow vectors u µ
X
. In accordance with what is suggested by

detailed microscopic analysis of dilute gas models12 it will be assumed that each

such contribution has contravariant components

τX µν = γµρτX ν
ρ (5)

that are symmetric and purely spacelike, i.e.

τX µν = τX νµ , τX µνtν = 0 , (6)

(where, as discussed in the preceding work,1 γµρ is the degenerate Newtonian space

metric while tµ is the preferred Newtonian time gradient) and it will also be assumed
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that the mixed version is strictly spacelike with respect to the corresponding fluid

rest frame, i.e. for each value of the chemical index X we shall have

u ν
X
τX µ

ν = 0 . (7)

It follows that it will be expressible in the form

τX µ
ν = γ

XνρτX ρµ , (8)

where γ
Xνρ is the positive indefinite (rank 3) space metric tensor that would be

determined (in the manner described in the preceding work1) by choosing the ether

reference vector eµ to coincide with the local flow vector u ν
X
, i.e. it is given by the

defining relations

γ
Xνργ

ρµ = γ µ
Xν , γ

Xνρu
ρ
X

= 0 , (9)

with

γ µ
Xν = δ µ

ν − uµ
X

tν . (10)

In order to set up an appropriate category of models, we proceed on the basis

of the postulate that this gross stress energy tensor should satisfy an energy mo-

mentum balance condition of the form

∇µT µ
groν =

∑

X

fX

ext µ , (11)

in which the terms on the right will all vanish whenever we are dealing with a

strictly self contained system, but in which the possibility of external force density

contributions fX

ext µ is included to allow for cases when we are dealing with an

open system involving effects such as neutrino emission or interaction with a long

range electromagnetic field whose treatment within a model of the non-relativistic

kind studied here is prevented by the incompatibility of the necessary Lorentz and

Galilean invariance requirements.

Using the specification (4) in conjunction with the Noether identity (3) we see

that the dynamical force balance requirement (11) will be expressible simply as

∑

X

f̃X
µ = 0 , (12)

where, for each constituent with label X, the corresponding amalgamated force

contribution is defined by

f̃X
µ = fX

µ + ∇ντX ν
µ − fX

ext µ . (13)



June 1, 2005 12:32 WSPC/142-IJMPD 00684

Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars 753

3. The Thermodynamic Positivity Requirement

It is now to be recalled that, according to our preceding work, each of the ordinary

local constituent 4-force densities in the Noether identity (3) will be given as the

sum of an acceleration contribution and a (gauge dependent) 4-momentum transfer

contribution by the formula

fX
µ = -fX

µ + πX
µ∇νn ν

X
, (14)

in which πX
µ is the relevant (gauge dependent) 4-momentum covector that is defined

in terms of the corresponding locally defined material 4-momentum covector µX
µ and

the background gravitational field potential φ by

πX
µ = µX

µ − mXφtµ , (15)

where mX is the relevant particle rest mass parameter, and the (gauge independent)

acceleration contribution is specified — using a cross barred symbol — by

-fX
µ = 2n ν

X
∇[νπX

µ] , (16)

which therefore satisfies

uµ
X

-fX
µ = 0 . (17)

In the particular case of the entropy current labelled by the value X = ∅, the rele-

vant particle rest mass vanishes, and (as illustrated by the example of the historic

Landau model3) the corresponding thermal momentum will be directly identifiable

with the local temperature covector that is obtained as the partial derivative of the

material Lagrangian density Λ with respect to the entropy current, Θµ = ∂Λ/∂sµ

(for fixed values of the other currents) and from which the temperature in the

thermal rest frame is obtainable as

Θ = −uµ
∅ Θµ , (18)

i.e. we shall simply have

m∅ = 0 , π∅
µ = Θµ . (19)

This means that, according to (15) the corresponding thermal 4-force density co-

vector will be given just by

f∅
µ = 2s ν∇[νΘµ] + Θµ∇νs ν , (20)

with the implication that its time component in the thermal rest frame will be given

simply by

u ν
∅ f∅

ν = −Θ∇νsν , (21)

which will be negative (since the temperature Θ must always be positive) by the

second law requirement (2) in any system that is closed in the strong sense of being

fully self contained, so that the external forces fX

ext µ on the right of (11) will vanish.
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In the more general case of an open system, in which there may be heat (i.e. thermal

energy) loss at a rate (per unit volume in the thermal rest frame) given by

Q = u ν
∅ f∅

ext ν , (22)

due to mechanisms such as neutrino emission, the local formulation of the second

law of thermodynamics will no longer take simple form (2) but will be given by the

more ubiquitously valid condition

Q + Θ∇νsν ≥ 0 . (23)

4. Transfusive Dissipation

We use the term transfusion to designate processes by which particles of different

species are converted into each other by various chemical or nuclear reaction pro-

cesses, which we shall distinguish by capital Greek letters. The elementary process

in some such reaction, with label Ξ say, will involve the creation of a number N Ξ

A

say of particles of the species with label A, using the convention that the early

Latin capital A ranges over the same values as the late Latin index X except for

the zero value reserved for the entropy, i.e. it is subject to the restriction A 6= ∅

(a simple example of such a process is the decomposition of a Helium nucleus

into a pair of neutrons and a pair of protons, so that if we attribute the labels

1, 2, 3 to neutrons, protons, and Helium nuclei respectively, this reaction will be

characterized by NΞ

1
= 2, NΞ

2
= 2, NΞ

3
= −1). In any such reaction, the relevant

particle creation numbers are restricted to satisfy the Newtonian mass conservation

condition given by

∑

A

NΞ

A
mA = 0 . (24)

By summing over the rates r
Ξ

of the relevant reactions, the ensuing particle creation

rates are obtainable as

∇νn ν
A

=
∑

Ξ

r
Ξ
NΞ

A
, (25)

subject to the proviso that we are dealing with a system that is closed in the

weak sense,13 meaning that there are no external losses or gains of the relevant

particle species. Closure in the strong sense, meaning the condition that the model

be entirely isolated in the sense of being fully self contained, would imply that

all the external 4-force density covectors fX

ext µ in (11) should vanish, whereas the

weak closure condition adopted here corresponds merely to the requirement that

the relevant material rest frame components should vanish, i.e.

fA

ext νu ν
A

= 0 . (26)

This restriction does not exclude the possibility of the kind of external force that

might be exerted by interaction with a magnetic field, and since it does not apply
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to the special index value X = ∅ labelling the entropy, it is also consistent with the

possibility of a positive value Q > 0 of the heat loss rate (22) due to a mechanism

(such as the URCA process) of the kind that would necessitate replacement of

the simple version (2) of the second law of thermodynamics by the more generally

applicable version (23).

In accordance with traditional usage13 in physical chemistry, it is convenient to

work with a quantity of the kind for which De Donder introduced the term affinity,

according to a specification of the form

AΞ

{ε} = −
∑

A6=∅

NΞ

A
EA

{ε} , (27)

in which the quantities EA

{ε} are the relevant energies per particle of the various

species involved, so that the affinity measures the net energy release in an elemen-

tary process of the kind (characterized by the label Ξ) under consideration.

A local static chemical (or nuclear) equilibrium state is one in which the relevant

affinities vanish. When the deviations from such a state are not too large, it is

natural to presume that the reaction rates will be linearly dependent on the affinities

according to a prescription of the form

r
Ξ

=
∑

Ψ

κ
ΞΨ

AΨ

{ε} , (28)

in which the coefficients κ
ΞΨ

form a symmetric matrix that must be positive in

order to ensure the positivity of the energy release rate
∑

r
Ξ
AΞ

{ε}. This implies

that the particle creation rates will be given by the formula

∇νn ν
A

= −
∑

B

Ξ
AB

EB

{ε} , (29)

in which Ξ
AB

is a positive indefinite matrix given by

Ξ
AB

=
∑

Ξ,Ψ

NΞ

A
κ

ΞΨ
NΨ

B
. (30)

This matrix is not positive definite, but only positive indefinite, because it evidently

has a null eigenvector provided by the set of particle masses, which will satisfy the

condition
∑

B

Ξ
AB

mB = 0 by the mass conservation law (24). Other such null

eigenvectors will be provided by other relevant charge number conservation laws.

(The ordinary mass conservation law is interpretable as the Newtonian limit of

what is given in a relativistic theory by the baryon conservation law.)

The meaning of the foregoing reasoning is unambiguous under conditions of

the kind most commonly considered in physical chemistry in which there are no

significant relative motions of the various constituents. However in the more general

circumstances we wish to deal with here the meaning of the prescription (27) will

be affected by the choice of reference systems in specification of the energies EA

{ε}.

The most obvious possibility is to evaluate the energy in the thermal rest frame,

with respect to which the energy per particle will be given simply by

EA

∅ = −πA
νu ν

∅ . (31)
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Such a specification does of course depend on the ether frame used for the definition

of the 4-momentum: it can be seen from the analysis of the preceding paper1 that

under a transformation characterized by a Galilean boost velocity vector bµ =

γµν∇νβ it will be subjected to a change given by the rule

EA

∅ 7→ ĔA

∅ = EA

∅ + mAu ν
∅ ∇ νβ −

1

2
mAb2 . (32)

However the mass conservation condition (24) can be seen to ensure that this gauge

dependence will cancel out in the corresponding thermal affinity, which is given by

AΞ

∅ = −
∑

A6=∅

NΞ

A
EA

∅ =
∑

A6=∅

NΞ

A
πA

νu ν
∅ = ĂΞ

∅ . (33)

Although it is independent of the choice of ether frame, the specification (33) of

the thermal affinity AΞ

∅ will still be indeterminate in applications for which there is

no well-defined thermal reference frame, a disadvantage that does not apply to what

may be termed the natural affinity, which is given in terms of the corresponding

natural energies χA

\ by

AΞ

\ = −
∑

A6=∅

NΞ

A
χA

\ = ĂΞ

\ . (34)

The natural energy is specified for each constituent as the corresponding chemical

potential as measured with respect to its own local rest frame, which means that

it will be given by

χA

\ = −uµ
A
χA

µ = −uµ
A
πA

µ +
1

2
mAv 2

A
− mAφ , (35)

in which the gauge dependence of the three separate terms on the right cancels out,

to give

χ̆A

\ = χA

\ . (36)

In the absence, at this stage, of any clear idea of which, if any of these two

(thermal and natural) alternatives may be most appropriate for general purposes,

we shall proceed in terms of a compromise using a mixed energy EA

{ε} that is defined

in terms of a parameter ε by

EA

{ε} = (1 − ε)EA

∅ + εχA

\ , (37)

which means that it will transform according to the rule

EA

{ε} 7→ ĔA

{ε} = EA

{ε} + mA(1 − ε)
(

u ν
∅ ∇ νβ − 1

2b2
)

, (38)

so that as before, in consequence of the mass conservation condition (24), the cor-

responding affinity (25) will be invariant,

ĂΞ

{ε} = AΞ

{ε} . (39)

In this parametrized weighting scheme the special thermal and natural cases are

given respectively by

AΞ

{0} = AΞ

∅ , AΞ

{1} = AΞ

\ , (40)
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and for the general case we shall have

AΞ

{ε} = (1 − ε)AΞ

∅ + εAΞ

\ . (41)

When the chemical reaction rates and the relative velocities are sufficiently

small it will not matter what value is chosen for the parameter ε, a consideration

that presumably accounts for the lack of attention to this issue in the standard

literature on non-equilibrium thermodynamics.13 However if the chemical reaction

rates or the relative velocities are too large, the distinction may become important

and in such a case the question of what would be most physically realistic would

ultimately need to be decided on the basis of a microscopic analysis of a kind

that does not yet seems to have been sufficiently developed. It might turn out

that for an accurate out of equilibrium thermodynamic description it would be

most appropriate to use something more complicated than the kind of weighted

mean adopted here. It is to be remarked that an affinity of the natural kind, as

characterized in our present notation by the weighting ansatz ε = 1, is what was

implicitly used in earlier relativistic work,9,10 whereas use of an affinity of the

thermal kind, as characterized by ε = 0, was implicit in more recent and specialized

relativistic work.11 It will be found below that the latter is more satisfactory for

applications involving superconductivity.

5. Viscous Dissipation

In a systematic approach to the construction of phenomenological dissipation laws

that are consistent with the thermodynamical inequality (23), the first step is to

evaluate its left hand side by contraction of the 4-force balance equation (12) with

the thermal rest frame unit vector u ν
∅ so as to obtain an identity of the form

∑

X

uµ
X
fX

ext µ =
∑

X

(

uµ

∅ πX
µ∇νn ν

X
+ uµ

X
∇ντX µ

ν − vµ

X∅ -̃fX
µ

)

, (42)

where vµ

X∅ is the (purely spacelike) velocity difference between the particular unit

flow 4-vector uµ
X

and the thermal rest frame unit 4-vector u µ
∅ , i.e.

v µ

X∅ = uµ
X
− uµ

∅ , (43)

and -̃fX
µ is the gauge independent force density contribution given by

-̃fX
µ = f̃X

µ − πX
µ∇νn ν

X
= -fX

µ + ∇ντX ν
µ − fX

ext µ . (44)

Let us now generalize this specification to a parameter dependent force density

contribution given by an expression of the analogous form

f̃X

{ε}µ
= fX

{ε}µ
+ ∇ντX

µ
ν − fX

ext µ , (45)

in terms of a combination given for A6= ∅, as a function of the weighting parameter

ε of the preceding section, by the formula

fA

{ε}µ
= fA

µ −
(

πA
µ − ε

(

χA
µ + 1

2mAv
A∅ µ

)

)

∇νn ν
A

, (46)



June 1, 2005 12:32 WSPC/142-IJMPD 00684

758 B. Carter and N. Chamel

so that in particular we shall have

fA

{0}µ
= -fA

µ . (47)

We complete the specification for the thermal case with a formula of a rather

different form

f∅
{ε}µ = f∅

µ +
∑

A

(

πA
µ − ε

(

χA
µ + 1

2mXv
A∅ µ

)

)

∇νn ν
A

, (48)

in order to obtain a sum over all constituents that is the same as for the ordinary

forces
∑

X

fA

{ε}µ
=

∑

X

fX
µ . (49)

This specification has been set up in such a way that, unlike the original (canon-

ically defined) 4-force vectors fX
µ, which are frame dependent unless the number

currents are separately conserved, the adjusted 4-force densities given by (46) and

(48) will have space projected parts that are always unaffected by Galilean (and

even Milne) transformations, i.e. they will satisfy the invariance conditions

γµν f̆X

{ε}ν
= γµνfX

{ε}ν
. (50)

The motivation for the introduction of the parametrically adjusted force densi-

ties given by the rather elaborately contrived definition (46) is that it enables us

to obtain a particularly simple and evocative expression for the entropy term in

(42). Using the total mass conservation condition that is obtainable from (24) in

the form
∑

A6=∅

mA∇νn ν
A

= 0 , (51)

in conjunction with the restrictions (7) and (26) it can be seen to follow from (42)

that it will be given — for any chosen value of the weighting parameter ε — by

Q + Θ∇µsµ = −
∑

A

EA

{ε}∇νn ν
A
−

∑

X

τX µ
ν ∇µu ν

X
−

∑

A

vµ

A∅ f̃A

{ε}µ
. (52)

In view of the second law requirement (23) to the effect that the left hand side of

(52) should be positive, the choice of admissible dissipation laws will be restricted

by the condition that it should be such as to ensure that the sum of the terms

on the right of (52) should also be positive. Although many other (generally more

complicated) ways involving various kinds of cross coupling are conceivable, it will

be adequate for most purposes to do this in the most obvious way by ensuring that

each of the three sums on the right of (52) is separately positive.

In so far as the first of these terms is concerned, this desideratum of positivity

is already satisfied by the ansatz of the previous section, which — for the chosen

value of ε — gives an expression of the form

−
∑

A6=∅

EA

{ε}∇νn ν
A

=
∑

Ξ,Ψ

AΞ

{ε}κΞΨ
AΨ

{ε} , (53)



June 1, 2005 12:32 WSPC/142-IJMPD 00684

Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars 759

whose positivity is evidently ensured by the condition that the transfusion matrix

κ
ΞΨ

should be positive definite.

To deal with the second term, we exploit the possibility of rewriting the negative

of the contribution of each constituent as

τX µ
ν ∇µu ν

X
= γµρτX ρνγνσ θ µσ

X
, (54)

where θ µσ
X

is the symmetric spacelike expansion rate tensor given by

θ µσ
X

= γν(µ∇νuσ)
X

, θ µσ
X

tσ = 0 . (55)

This tensor is decomposable in a well-defined (Galilean and even Milne gauge in-

dependent) manner into tensorially irreducible parts in the form

θ µν
X

= σ µν
X

+ 1
3θ

X
γµν , (56)

where σ µν
X

is the trace free shear rate tensor and θ
X

is the scalar expansion rate,

as characterized by

γµνσµν = 0 , θ
X

= γµνθ µν
X

. (57)

This enables us to write the negative of viscosity term in (42) as
∑

X

τX µ
ν ∇µu ν

X
=

∑

X

γµργνστX µνσ ρσ
X

+ 1
3

∑

X

γµντX µνθ
X

. (58)

In order to ensure that this total is negative as required, the obvious general-

ization of the ansatz that is familiar in the case of a single constituent fluid is to

postulate that the relevant stress contributions are given by an expression of the

form

τX µν = −2
∑

Y

ηXYσ µν
Y

−
∑

Y

ζXYθ
Y
γ µν , (59)

where ηXY is a positive definite or indefinite but in any case (by the Onsager prin-

ciple) symmetric matrix of shear viscosity coefficients, and ζXY is a similarly sym-

metric positive definite or indefinite matrix of bulk viscosity coefficients.

6. Ordinary Resistive Dissipation

To complete the determination of the dynamical equations of motion it remains to

specify the space components of the force on each constituent. The most obvious

way of doing this in such a way as to ensure consistency with the total force balance

condition (12) is to take them to consist of sums of pairwise interaction contributions

in the form

γµν f̃X

{ε} ν
=

∑

Y

fXYµ , (60)

subject to the conditions

fXY µ = −fYX µ , tµfXY µ = 0 . (61)
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It is possible to conceive situations in which a more elaborate construction proce-

dure might be needed, but we shall not envisage such complications here.

Proceeding on the basis of the ansatz (60) we must now consider how the admis-

sible forms of the two-constituent interaction force densities fXY µ are restricted by

the second law of thermodynamics. As we have already chosen rules that ensure

the positivity of the first two terms on the right of (52), this restriction will amount

just to the requirement of positivity of the final term, which will be given by

−
∑

X

vµ

X∅f̃
X

{ε}µ
=

∑

X,Y

v
X∅ µfYX µ = 1

2

∑

X,Y

v
XY µfYX µ . (62)

in which the (gauge invariant) relative velocity vµ
XY

and the corresponding (gauge

dependent) covector v
XY µ are defined by

vµ
XY

= vµ

X∅ − vµ

Y∅ = uµ
X
− uµ

Y
, v

XY µ = γµνvν
XY

. (63)

The obvious way to fulfil this requirement is to suppose that the forces are

due just to resistivity of the ordinary kind, which means that for each pair of

distinct constituent label values 6= Y the corresponding contribution will be given

by an ordinary positive resistivity coefficient ZXY = ZYX ≥ 0 according to the

specification

fYX µ = ZXYvµ
XY

. (64)

It follows that the third term on the right of (52) will be given by

−
∑

A

vµ

A∅ f̃A

{ε}µ
= 1

2

∑

X,Y

ZXYvµ
XY

γµνvν
XY

, (65)

which shows that it does indeed satisfy the required positivity condition.

Having thus obtained an appropriate resistivity formula (60) for the gauge in-

variant force density components γµν f̃X

{ε} ν
we can immediately use the defining

relation

f̃A
µ = f̃A

{ε}µ
−

(

πA
µ − ε

(

χA
µ + 1

2mAv
A∅ µ

)

)

∇νn ν
A

, (66)

to provide a corresponding formula for the original unadjusted (gauge dependent)

material force density components, which will be given by

γµν f̃A
ν =

∑

Y

ZAYvµ
YA

−
(

γµνπA
ν − ε

(

γµνχA
ν + 1

2mAv µ

A∅

))

∇νn ν
A

. (67)

7. Superfluid Drag Dissipation

The simple kind of resistive dissipation mechanism described in the previous section

will not be operational in the case of a constituent that is superfluid. To deal with

such cases, let us use indices I, J that range over the values (if any) of X referring

to a superfluid constituent, while using indices C, D that range over the values of X

referring to the remaining — normal — constituents.



June 1, 2005 12:32 WSPC/142-IJMPD 00684

Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars 761

On a sufficiently small — mesoscopic — scale, superfluidity can be dealt with

directly in terms of the kind of model set up in the preceding section by imposing the

following conditions, of which the first and most obvious is simply the requirement

that the relevant superfluid viscosity and resistivity coefficients should vanish, i.e.

ηIX = 0 , ζIX , ZIX = 0 , (68)

which implies, by (59) that the corresponding viscous tension contributions τ I µν

will vanish. The next condition is that the superfluid constituents are not directly

subject to any external force,

f I

ext µ = 0 , (69)

so that we shall be able to make the identifications

f̃ I
µ = f I

µ . (70)

The final condition that needs to be imposed is that we should be able to make the

identification

f̃ I

{ε} µ
= f I

{0}µ
, (71)

where (by definition)

f I

{0}µ
= n ν

I
$I

νµ , (72)

which will follow from (70) subject to the requirement that we adopt the thermal

affinity ansatz,

ε = 0 , (73)

or else that the relevant chemical reaction rates are set to zero so that the superfluid

particle creation rates ∇νn ν
I

all vanish, in which case the value of ε does not matter.

When the conditions (68), (69) and (73) are all satisfied it can be seen that the

equations of motion set up in the preceding sections will be consistent with the

restraint to the effect that the relevant superfluid vorticities

$I
µν = 2∇[µπI

ν] , (74)

should vanish, as necessary for the existence of corresponding local superfluid phase

scalars ϕI such that N
I
πI

ν = ~∇νϕI , where N
I
is the number (2 for the usual case of

a Cooper type pair) of constituent particle in a boson of the superfluid condensate

under consideration.

For application on larger scales such a mesoscopic description is inadequate, and

must be replaced by a macroscopic description that allows non-vanishing super-

fluid vorticities $I
µν , which are interpretable as representing the average effect of

a fibration by microscopic vortex tubes on which the mesoscopic irrotationality

condition breaks down. This interpretation means that although it does not have

to vanish, the macroscopic vorticity 2-form of a superfluid constituent cannot have

an arbitrary algebraic form but must satisfy the degeneracy condition

$I

[µν
$I

ρ]σ = 0 , (75)
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(which means that its matrix rank is not four as in the generic case but two, since its

antisymmetry excludes the possibility of an odd valued rank) in order for the null

eigenvectors that generate the vorticity flux two surfaces to exist. As remarked in

the context of the analogous relativistic problem,11 the only obvious way of setting

up a force law that satisfies this condition is to postulate that it should have the

form

f I

{0}µ
= n

I
$I

µνV ν
I

, (76)

in which V ν
I

is some vector such that the combination u ν
I

+ V ν
I

is one of the null

eigenvectors generating the flux surfaces of the vorticity flux $I
µν , i.e. such that

$I
µν(u ν

I
+ V ν

I
) = 0.

The superfluidity ansatz (76) can be applied within the framework set up in

the preceding section by supposing that V ν
I

is decomposable as a sum of separate

contributions V C ν
I

from the various non-superfluid contributions, in the form

V ν
I

=
∑

C

V C ν
I

, (77)

so that the corresponding space projected force contributions in the decomposition

(60) can be taken to be given by

f IC µ = n
I
γµν$I

νρV
C ρ
I

. (78)

As in the preceding section, we now need to find a procedure for choosing the

force contributions in such a way as to ensure the positivity of the final term on the

right of (52), which will now be given as a combination of normal and superfluid

contributions in the form

−
∑

X

vµ

X∅ f̃X

{0} µ
= 1

2

∑

C,D

v
CD µfDC µ +

∑

C,I

v
CI µf IC µ . (79)

As before, we can deal with the normal part by taking the relevant force contribu-

tions to be given for C 6= D by a set of normal resistivity coefficients ZCD = ZCD ≥ 0

according to the simple specification

fDC µ = ZCDvµ
CD

, (80)

which will automatically take care of the positivity of the first term on the right of

(79), but the superfluid contributions f IC µ will need to be handled in a different

manner.

The remaining positivity requirement that still needs to be satisfied is that of

the second term on the right of (79), which can be rewritten as
∑

C,I

v
CI µf IC µ =

∑

C,I

v µ
CI

n
I
$I

µνV C ν
I

=
∑

C,I

uµ
C

n
I
$I

µνV C ν
I

, (81)

where the last step is obtained by substituting (77) in (76) and using the identity

uµ
I

f I

{0}µ
= 0. We now proceed in a manner analogous to that by which the ordinary

resistivity forces were introduced above, which means that we ensure the positivity
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of the separate terms in the sum on the right of (81) by taking each vector V C µ
I

to

be given by an expression of the form

V C µ
I

= −cC

I
(wI)−1γµν$I

νρu
ρ
C

, (82)

where cC

I
is a positive drag coefficient and we have included a positive normalization

factor given by the magnitude wI ≥ 0 of the (gauge independent) space projected

vorticity vector

wI µ = 1
2εµνρ$I

νρ , (83)

according to the specification

(wI)2 = 1
2γµνγρσ$I

µρ$
I
νσ = γµνwI µwI ν . (84)

The prescription (84) is evidently equivalent to the adoption of a force law of

the form

f IC µ = cC

I
n

I
wI ⊥Iµ

ν u ν
C

, (85)

where

⊥Iµ
ν= (wI)−2γµργστ$I

τρ$
I
σν . (86)

Adding up the resulting contributions we finally obtain

γµνf I

{0} ν
= n

I
γµν$I

νρV
ρ

I
, (87)

which (by the identity u ν
I
f I

{0} ν
= 0) automatically provides the required result (76)

with

V µ
I

= −(wI)−1γµν$I
νρ

∑

C

cC

I
u ρ

C
. (88)

To relate this 4-dimensionally covariant formulation to the traditional Newto-

nian terminology using a 3 + 1 decomposition based on some particular choice of

ether frame vector eµ, it is useful to introduce the (frame dependent) vorticity sur-

face generating unit 4-vector ǔµ
I

and its associated 3-velocity vector v̌µ
I

= ǔµ
I
− eµ

by the defining conditions

$I
µν ǔν

I
= 0 , γµνwI µv̌ν

I
= 0 . (89)

In terms of such a vorticity flux velocity vector, the degenerate vorticity 2-form

$I
µν will be expressible as

$I
µν =

(

εµνρ + 2t[µεν]σρv̌
σ
I

)

wI ρ , (90)

and the (rank 2) projection tensor in (85) will be given by

⊥Iµ
ν= γµ

ν − v̌ µ
I

tν − (wI)−2wI µwI
ν . (91)

It can thus be seen that the projected velocity on the right of (85) will be given by

⊥Iµ
ν u ν

C
= v µ

C
− (wI)−2wI µwI νv

C ν − v̌ µ
I

. (92)
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8. The Limit Cases of Convection and Pinning

If some resistivity coefficient, ZXY , is very large, the corresponding velocity dif-

ference, vµ
YX

will tend to be very small. In such a case it will often be convenient

to use a simplified dynamical treatment based on the relevant convection ansatz to

the effect that the velocity difference in question should actually vanish. To deal

with this kind of convective limit, i.e. a case in which the number of independent

normal velocities is smaller that the number of independent chemical constituents,

it is convenient to introduce a new kind of index 〈U〉, distinguished by surrounding

angle brackets, to label the independent velocities and the corresponding comoving

subsets of constituents that are characterized as equivalence classes by

C ∈ 〈U〉 ⇔ uµ
C

= uµ
〈U〉

. (93)

In particular we shall use the label 〈∅〉 for the class of constituents that are convected

with the entropy, so that

C ∈ 〈∅〉 ⇔ vµ

C∅ = 0 . (94)

For each such class of comoving constituents, it will be useful to define com-

bined values of additive quantities such as force density and stress using notation

illustrated by the examples

f̃ 〈U〉
µ =

∑

C∈〈U〉

f̃C
µ , f 〈U〉

ext µ =
∑

C∈〈U〉

fC

ext µ , τ 〈U〉 µ
ν =

∑

C∈〈U〉

τC µ
ν , (95)

and more particularly for the ordinary dynamical 4-force density by

f 〈U〉
µ =

∑

C∈〈U〉

fC
µ = 2u ν

〈U〉

∑

C∈〈U〉

n
C
∇[νπC

µ] +
∑

C∈〈U〉

πC
µ∇νn ν

C
. (96)

Using this notation we can regroup the terms on the right of the general entropy

creation formula (52) in the form

Q + Θ∇µsµ = −
∑

A

EA

{∅}∇νn ν
A
−

∑

〈U〉

τ 〈U〉 µ
ν ∇µu ν

〈U〉

−
∑

〈U〉

v µ

〈U〉∅
f̃ 〈U〉

{0} µ
−

∑

I

v µ

I∅
f I

{0}µ
. (97)

Using the notation introduced above, according to which

f̃ 〈U〉

{0}µ
= f 〈U〉

{0}µ
+ ∇ντ 〈U〉

µ
ν − f 〈U〉

ext µ . (98)

The first term on the right of (97) is the rate of chemical energy release which

we deal with exactly as before in (29) by setting

∇νn ν
A

= −
∑

B

Ξ
AB

EB

{∅} , (99)

where Ξ
AB

is the same reactivity matrix as was introduced above. The second term

on the right of (97) is the viscous energy dissipation rate which we deal with in the

same manner as in (59) by setting

τ 〈U〉 µν = −2
∑

〈V 〉

η〈U〉〈V 〉σ µν
〈V 〉

−
∑

〈V 〉

ζ〈U〉〈V 〉θ
〈V 〉

γ µν . (100)
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The only difference being that the positive shear viscosity coefficients η〈U〉〈V 〉 =

η〈V 〉〈U〉 and bulk velocity coefficients ζ〈U〉〈V 〉 = ζ〈V 〉〈U〉 now only need to be specified

for the restricted range of the index 〈U〉 labelling the comoving equivalence classes

rather than for the full range of the normal constituent label C. It will similarly

be sufficient to specify just a restricted range of positive resistivity coefficients

Z〈U〉〈V 〉 = Z〈V 〉〈U〉 for 〈U〉 6= 〈V 〉 to specify the resistivity contribution in a force

formula whereby the terms in the original expression (62) are regrouped in the form

γµν f̃ 〈U〉

{0} ν
=

∑

〈V 〉

f 〈U〉〈V 〉µ +
∑

I

f 〈U〉I µ , (101)

in which the resistive force density terms are given by

f 〈U〉〈V 〉 µ = Z〈U〉〈V 〉v µ
〈V 〉〈U〉

. (102)

It remains to specify the vortex drag terms f I〈U〉 µ = −f 〈U〉I
µ
, which combine

to give the space convected superfluid force densities as

γµν f I

{0} ν
=

∑

〈U〉

f I〈U〉 µ , (103)

so that the last two terms in (97) can be recombined in the form

−
∑

〈U〉

v µ

〈U〉∅
f̃ 〈U〉

{0}µ
−

∑

I

v µ

I∅
f I

{0}µ

= 1
2

∑

〈U〉,〈V 〉

v
〈V 〉〈U〉 µf 〈U〉〈V 〉 µ +

∑

〈U〉,I

v
〈U〉I µf I〈U〉 µ . (104)

According to the reasoning of the preceding section, these contributions should

be given by expressions of the form

f I〈U〉 µ = n
I
γµν$I

νρV
〈U〉 ρ
I

(105)

for a set of generalized velocity vectors that add up to give a sum

V µ
I

=
∑

〈V 〉

V 〈U〉 µ
I

, (106)

in terms of which we shall get

$I
µν

(

uµ
I

+ V µ
I

)

= 0 , (107)

and

f I

{0}µ
= $I

µνV µ
I

. (108)

The final drag dissipative term in (104) can thereby be rewritten as
∑

〈U〉,I

v
〈U〉I µf I〈U〉 µ =

∑

〈U〉,I

n
I
u µ

〈U〉
$I

µνV 〈U〉 ν
I

. (109)

By the same reasoning as in the preceding section, we can ensure the required

positivity of the total (103) by adoption of an ansatz of the form

V 〈U〉 µ
I

= −c 〈U〉
J

(wJ)−1γµν$J
νρu

ν
〈U〉

, (110)
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which is equivalent to setting

f J〈U〉 µ = c 〈U〉
J

n
J
wJ ⊥Jµ

ν u ν
〈U〉

, (111)

for a set of positive drag coefficients c 〈U〉
J where J, like I, ranges over the set of

superfluid index labels.

There is however an extreme limit known as pinning — the analogue for a

superfluid constituent of convection in the normal case — representing what will

occur if some drag coefficient c 〈U〉
H say is very large, in which case the normal flow

vector u µ
〈U〉

will be constrained to lie in the relevant vorticity surface, a requirement

that is evidently expressible as the condition

$H
µνu ν

〈U〉
= 0 , (112)

which is evidently sufficient to ensure that the corresponding dissipation term in

the sum (109) will simply vanish.

This can be achieved by taking the term fH〈U〉µ to be given by the dissipative

drag prescription of the form (111) that applies to the other contributions fH〈V 〉µ

for 〈V 〉 6= 〈U〉 — and to all the corresponding force contributions for the unpinned

constituents — but instead by the alternative ansatz

V 〈U〉 µ
H

= v µ
〈U〉H

−
∑

〈V 〉6=〈U〉

V 〈V 〉 µ
H

(113)

that is equivalent to the formula

fH〈U〉µ = n
H
γµν$H

νρv
ρ

〈U〉H
−

∑

〈V 〉6=〈U〉

fH〈V 〉 µ , (114)

which is chosen in such a way as to ensure that, according to (103), the total force

acting on the pinned constituent will be given by

γµν fH

{0} ν
= n

H
γµν$H

νρv
ρ

〈U〉H
. (115)

For any value of the superfluid constituent index I, not just for the pinned index

value H we have been considering, knowledge of the contravariant space projection

γµνf I

{0} ν
will be sufficient for the complete specification of f I

{0} ν
due to the identity

uµ
I

f I

{0}µ
which implies that we shall have

f I

{0} ν
= γ

I µνγνρf I

{0} ρ
(116)

with γ
I µν defined as usual by γ

I µνu ν
I

= 0, γ
I µνγνρ = δ ρ

µ − tµu ρ
I
. The formula

(115) thus implies that for the constituent with label H that is pinned to the set of

currents with label 〈U〉, we shall have

fH

{0}µ
= n

H

(

$H
µνv ν

〈U〉H
− tµu ν

H
$H

νρu
ρ

〈U〉

)

, (117)

with the evident implication that u µ
〈U〉

fH

{0}µ
will vanish, and hence by the definition

(72) that the second term in (117) will drop out. Thus we are finally left with the

simple formula

fH

{0}µ
= n

H
$H

µνv ν
〈U〉H

, (118)
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in which the right hand side is interpretable as a gauge invariant version of the

Joukowski formula for the Magnus effect. It is easy to see — using the definition

(72) and the decomposition u ν
〈U〉 = u ν

H
+ v ν

〈U〉H
— that the application of this force

law (118) is indeed equivalent to the imposition of the pinning condition (112).

It is to be remarked that the phenomena of pinning and convection are physi-

cally rather similar in that they both can be considered as constraints representing

the effect of extremely strong dissipative coupling. However the way they have been

dealt with here mathematically is very different. In the case of pinning the dynam-

ical equations have been adjusted in such a way that, after having been imposed as

an initial value restriction, the relevant restraint will be preserved by the equations

of motion. On the other hand in the case of convection the constraint has been

directly imposed at an algebraic level, so as to reduce the number of independent

components of the system from 4N , where N is the number of constituents (each

with its own current 4-vector n µ
X

) to 4N − 3N ′ where N ′ is the number of inde-

pendent comotion constraints (each of which removes the corresponding 3-velocity

components from the list of independent variables while leaving the corresponding

number density). The most familiar example is that of a generic non-barotropic

fluid, as characterized by just a single independent velocity, so that N ′ = N − 1

and the number of independent components is just N + 3, including as a special

case the barotropic fluid model characterized by N = 1, N ′ = 0, for which the

number of independent components reduces to 4.
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Appendix. The Basic Convective Superconducting

Superfluid Model

In order to set up a large scale neutron star model for the purpose of describing the

pulsar glitch phenomenon — which is generally recognized to depend on relative

motion of a superfluid constituent relative to a normal background — the usual

kind of perfect fluid model will evidently be inadequate. On the other hand it may

be hoped that a satisfactory description will be attainable without recourse to the

very elaborate kind of model involving separate allowance for the many degrees of

freedom (such as those of the electromagnetic field that plays an essential role in

the mechanics of the external magnetosphere) that would need to be taken into

account in a highly accurate treatment. As a reasonable compromise, for use in

such a context, the following basic convective superconducting superfluid kind of

model would seem to be appropriate.

The proposed basic model has three independent constituents of which one is

superfluid while the other two are subjected to a convection constraint. Thus in
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the notation of the previous section it is characterized by N = 3 and N ′ = 1 which

means that it has nine dynamically independent components.

In the context for which it is intended, the three constituent currents are to be

considered as consisting of an entropy current

sµ = suµ

∅ , (A.1)

a superfluid neutron current

nµ
n = nnuµ

n , (A.2)

and a normal current

nµ
c = ncu

µ
c , (A.3)

that convects the entropy flux, with which it shares the unit flow 4-vector

uµ
c = uµ

∅ , (A.4)

and that is to be interpreted as representing the flux of all other baryons. This

normal baryon current is to be thought of as consisting not just of protons but at

deeper levels also of hyperons, whose charge is neutralized by an ambient lepton

gas consisting not just of electrons but at deeper levels also of muons. In the crust

layers the normal baryon constituent will also include the neutrons that are confined

within atomic nuclei. A realistic treatment of the crust (whose outer layers, at

densities below 1011 g/cm3, contain no unconfined superfluid neutrons at all) would

need the use of a model of a more elaborate elastic conducting solid kind, whose

formulation, in the covariant Newtonian approach developed here, will be left for

future work. A Newtonian treatment will in any case be inadequate for an accurate

treatment of the deeper levels, for which a relativistic version11 of the model would

of course be needed.

As in the relativistic version, there will be a baryon conservation law having the

form

∇νn ν
n + ∇νn ν

c = 0 . (A.5)

In the Newtonian approximation, with which we are concerned here, this law is to

be interpreted as representing the conservation of rest mass, on the understanding

that both — superfluid neutron and normal (protonic or other) kinds of baryon are

treated as having the same rest mass, m say, per particle, while there is of course

no rest mass associated with the entropy, i.e. we have

m∅ = 0 , mc = m , mn = m . (A.6)

Within the few per cent level of accuracy — the most that can be expected from

a Newtonian treatment in this context — this common rest mass m can be chosen

indifferently to be either the mass of the hydrogen atom or simply the bare proton

mass m
p

(not to mention the value traditionally preferred by chemists, which is

one sixteenth of the mass of an ordinary oxygen atom).
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In order to characterize a particular model of this type, the essential element —

which is all that is needed in the conservative case — is the pressure function Ψ or

equivalently its dynamical conjugate the master function Λ
int

, whose unconstrained

version is given as a function of the 4-vectors sµ, nµ
c and nµ

n in a gauge invariant

manner — meaning that it can depend only on the six-scalars consisting of the

number densities s, nc and nn together with the relative velocity magnitudes vc∅,

vn∅ and vnc from which the corresponding internal momentum contributions are

obtainable as the partial derivatives given by the variation law

δΛ
int

= Θνδsν + χc
νδn ν

c + χn
νδn ν

n . (A.7)

The pressure function is obtainable from the master function, and vice versa, by a

Legendre type tranformation expressible as

Ψ = Λ
int

− Θνsν − χc
νn ν

c − χn
νn ν

n , (A.8)

so that its variation law will have the form

δΨ = −sνδΘν − n ν
c δχc

ν − n ν
n δχn

ν . (A.9)

The associated stress momentum energy density tensor will be given2 by a

formula of the standard form

T µ
ν = sµ π∅

ν + nµ
c πc

ν + nµ
n πn

ν + Ψδµ
ν , (A.10)

in terms of the corresponding set of complete 4-momentum covectors, of which that

of the entropy is simply

π∅
µ = Θµ , (A.11)

while those of the massive constituents are given in terms of the corresponding

frame dependent 3-velocity covectors vc µ = γµνu ν
c and vn µ = γµνu ν

n by

πc
µ = χc

µ + mvc µ − m
(

1
2v 2

c + φ
)

tµ , (A.12)

πn
µ = χn

µ + mvn µ − m
(

1
2v 2

n + φ
)

tµ , (A.13)

where φ is the gravitational potential.

In terms of the corresponding thermal, normal and superfluid vorticity forms,

namely

$∅
µν = 2∇[µπ∅

ν] , $c
µν = 2∇[µπc

ν] , $c
µν = 2∇[µπc

ν] , (A.14)

the associated 4-force covectors will be expressible by the defining formulae

f∅
µ = s ν$∅

νµ + Θµ∇νs ν , (A.15)

f c
µ = n ν

c $c
νµ + πc

µ∇νn ν
c , (A.16)

fn
µ = n ν

n $n
νµ + πn

µ∇νn ν
n . (A.17)
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It is to be remarked that if we want to describe the superfluid on a mesoscopic scale

(large compared with the microscopic particle separation length scales but small

compared with the intervortex spacing) we would need to impose the restraint

that the superfluid vorticity $n
νµ should vanish, but that it will in general have a

nonzero value on the macroscopic scale (meaning one that is large compared with

the intervortex spacing) for which the present treatment is intended.

If we are dealing with a conducting (as opposed to convective) model the infor-

mation needed to characterize the dynamical evolution of the system would consist

of a complete specification of all three of the 4-force covectors that have just been

listed, which is equivalent to the specification of the three creation rates ∇νs ν ,

∇νn ν
c , ∇νn ν

n , and of the three corresponding space projected 3-force vectors γµνf∅
ν ,

γµνf c
ν , γµνfn

ν (the simplest possibility being that of the strictly conservative case

for which all three 4-force covectors are set to zero). In a convecting model of the

kind we wish to consider here, we still need to specify the creation rates ∇νs ν ,

∇νn ν
c , ∇νn ν

n , as well as the space projected 3-force vector γµνfn
ν of the superfluid

constituent, but in view of the constraint (A.4) we do not need a separate speci-

fication for the corresponding thermal and normal baryon contributions, but only

for their sum γµνf
〈c〉
ν where f

〈c〉
ν is the combined 4-force density defined by

f 〈c〉
ν = f c

ν + f∅
ν . (A.18)

The foregoing variational specification of the separate 4-momenta as functions

of the corresponding currents requires that the master function be defined not just

for convectively constrained configurations but even when there is a relative motion

between the entropy current and the normal baryon constituent. Such a general, un-

constrained specification will indeed be available if the convective (nine component)

model under consideration has been obtained as a high resistivity approximation

from an unconstrained (12 component) conducting in which all three constituents

move independently. It will however be more economical from a mathematical point

of view to avoid the introduction of redundant information from such an uncon-

strained ancestor model, and to work entirely within the framework of a reduced

variational framework in which the master function Λ
int

and the associated pressure

function Ψ are specified only for the range of variables allowed by the convectivity

constraint (A.4).

In such a reduced formulation, the nine independent components can be taken

to consist of the four components of the superfluid current vector n ν
n , the four

components of the normal baryon current vector n ν
c , together with just the density

s of the entropy current, whose velocity is not independent but given by that of

the normal baryon current. The most general variation that is allowed within this

reduced formulation will be given by an expression of the form

δΛ
int

= −Θ δs + χ〈c〉
µ δn ν

c + χn
µ δn ν

n , (A.19)

which does not provide a specification of the separate thermal and normal baryon

momentum covectors Θµ and χµ but only of the scalar temperature Θ and the
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amalgamated normal momentum covector χ
〈c〉
µ that can be evaluated within the

ancestral unconstrained framework as

Θ = −u ν
∅ Θ ν , χ〈c〉

µ = χc +
s

nc
(Θtµ + Θµ) . (A.20)

The corresponding complete amalgamated normal momentum covector

π〈c〉
µ = πc

µ +
s

nc
(Θtµ + Θµ) (A.21)

will be obtainable in the reduced formulation as

π〈c〉
µ = χ〈c〉

µ + mvc µ − m
(

1
2v 2

c + φ
)

tµ . (A.22)

It is to be emphasized that it is possible for physically different ancestor

models — as characterized by different values of Θµ and χµ for given values of

the independent currents — to engender the same reduced model, in the sense of

providing the same values for Θ and χ
〈c〉
µ , and hence also for the pressure function

(A.9) and the stress energy tensor (A.22), which will be expressible as

Ψ = Λ
int

+ Θs − χ〈c〉
ν n ν

c − χn
νn ν

n , (A.23)

and

T µ
ν = nµ

c π〈c〉
ν − Θsµtν + nµ

n πn
ν + Ψδµ

ν . (A.24)

The formalism of the reduced formulation is not quite so elegant, but it has the

advantage of avoiding the introduction of operationally redundant information sing-

ling out some particular one of the compatible unconstrained ancestor models.

In the framework of the reduced formulation the combined force (A.18) will be

expressible as

f 〈c〉
µ = 2n ν

c ∇[νπ
〈c〉
µ] + π〈c〉

µ ∇νn ν
c + s∇µΘ − tµ∇ν(Θsν) . (A.25)

We thereby obtain an expression of the form

γµνf
〈c〉
{0}ν

= 2γµρn ν
c ∇[νπ〈c〉

ρ] + sγµν∇µΘ

+
(

γµν
(

χ〈c〉
ν − χn

ν

)

+ m v µ
cn

)

∇νn ν
c , (A.26)

for the corresponding adjusted (gauge invariant) 3-force density vector, whose ana-

logue, for the free neutron current, will be given simply by

γµνfn
{0}ν = γµρn ν

n $n
νρ , $n

νρ = 2∇[νπn
ρ] . (A.27)

In order to complete the determination of the dynamical equations of the model,

it is necessary to choose the rules specifying the values of these space projected 3-

force vectors γµνf
〈c〉
{0}ν

and γµνfn
{0}ν , and of the two independent creation rates ∇νs ν

and ∇νn ν
n — of which the latter, by (A.5), determines ∇νn ν

c . The simplest possi-

bility is of course that of a strictly conservative model for which the forces and

creation rates all vanish. What we want to consider here is the more general case
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in which there is internal dissipation by the mechanisms described in the preced-

ing sections and perhaps also a non-vanishing heat loss rate Q (due to neutrino

emission) but we shall suppose that although the system may thus be open in

the thermodynamic sense it is nevertheless isolated in the sense that there are no

external contributions to the space projected force densities, nor to the time com-

ponent of the force acting on the free neutron current, so that in the notation of

the preceding section we shall have

fn
ext ν = 0 , f 〈c〉

ext ν = Qtν . (A.28)

According to the general principles developed in the preceding sections, the space

projected forces will therefore be given by expressions of the standard form

γµνf
〈c〉
{0}ν

= f 〈c〉nµ −∇ν τ 〈c〉µν , (A.29)

γµνfn
{0}ν = −f 〈c〉nµ −∇ν τn µν . (A.30)

In a high temperature version of the model, the mutual interaction force density

f 〈c〉nµ would be given in terms of an ordinary positive resistivity coefficient Z 〈c〉n

by an expression of the form

f 〈c〉nµ = Z〈c〉nv µ
cn . (A.31)

What we are particularly interested in here however is the low temperature version

of the model, in which the free neutron current is a superfluid, which means that

instead of being given by an ordinary resistivity formula of the form (A.31) the

mutual interaction will be given by a vortex drag formula of the kind given by the

formula (111).

In the present case, the vortex drag force density will be given by the expression

f 〈c〉nµ = −nnγ
µν$n

νρV
〈c〉 ρ
n , (A.32)

in which c
〈c〉
n is the positive drag coefficient, and the vector V

〈c〉µ
n is defined by

V 〈c〉µ
n = −

c 〈c〉
n

wn
γµν$n

νρu
ρ
c , (wn)2 = 1

2γµνγρσ$n
µρ$

n
νσ , (A.33)

or alternatively just by

V 〈c〉µ
n = v µ

〈c〉n , (A.34)

in the non-dissipative large c
〈c〉
n limit case of vortex pinning. In any such (pinned

or unpinned) superfluid model, the free neutron current will not be subjected to

any viscosity force, i.e. we shall have

τn µν = 0 , (A.35)

but for the combined thermal and normal baryon current contribution there will in

general be a non-vanishing viscosity contribution of the standard form

τ 〈c〉µν = −2η〈c〉σ µν
c − ζ〈c〉θcγ

µν , (A.36)
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in which η〈c〉 and ζ〈c〉 are positive shear and bulk viscosities (of which the latter

will be negligibly small in many circumstances) and σ µν
c and θc are the trace free

and trace parts of the normal constituent’s expansion tensor as given, according to

(56), by

θ µν
c = γσ(µ∇σu ν)

c = σ µν
c + 1

3θcγ
µν . (A.37)

To complete the specification of the model it remains to give the prescription for

the creation rates. In the present case the only relevant kind of generalized chemical

reaction is one whereby a free neutron is created by a process such as “dripping”

out of a confined state within a neutron star crust nucleus or by inverse beta decay

of a proton in the core, so that the corresponding creation numbers will be Nn = 1

and Nc = −1, and the corresponding chemical affinity will be given by the formula

A{∅} = Ec
{∅} − En

{∅} , (A.38)

in terms of the relevant thermal rest frame energies as defined in terms of the

relevant (ancestral or reduced) 4-momentum covectors by

Ec
{∅} = −u ν

∅ πc
ν = −u ν

∅ π〈c〉
ν , En

{∅} = −u ν
∅ πn

ν . (A.39)

The superfluid particle creation rate can thus be seen to be given in terms of

the relevant transfusion coefficient κ by an expression of the standard form

∇νn ν
n = κA{∅} , (A.40)

in which the affinity is given in terms of the relative flow velocity magnitude vnc by

the manifestly frame independent formula

A{∅} = χc
\ − χn

∅ −
1
2mv 2

nc , (A.41)

where

χc
\ = −u ν

c χc
ν = −u ν

c χ〈c〉
ν , χn

∅ = −u ν
∅ χn

ν = −u ν
c χn

ν . (A.42)

The last thing we need to complete the specification of the model is the value of

the energy emission rate Q that determines the entropy rate via the formula (97),

which gives

Q + Θ∇µsµ = κA2
{∅} + 2η〈c〉γµνγρσσ µρ

c σ νσ
c

+ ζ〈c〉θ2
c +

nnwn

c
〈c〉
n

V 〈c〉µ
n γµνV 〈c〉 ν

n . (A.43)

The complete set of dynamical equations for the nine independent components

(those of the space vectors v µ
c and v µ

n together with the scalars nc, nn and s)

is thus completed: it consists of the creation formulae (A.5), (A.40) and (A.43),

together with the pair of 3-force equations (A.29), (A.30) (as made explicit by the

prescriptions (A.32), (A.33), (A.35) and (A.36) for drag and viscosity).
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It is to be remarked that the final term in (A.43) will drop out in the large

c
〈c〉
n limit for which the drag prescription (A.33) is replaced by the vortex pinning

prescription (A.33). In a similar way the first term in (A.43) in the large κ limit for

which the system will be maintained in a state of chemical equilibrium as charac-

terized by the condition A{∅} = 0 which will have the effect of reducing the number

of dynamically independent components from nine to eight.

The particular case of a thermodynamically closed model — which may be a

good approximation for processes occurring on a short timescale — will be obtained

by setting Q = 0. However it will often be more realistic to take Q to have a value

that is positive and monotonically increasing as a function of the temperature

Θ to allow for losses by URCA type neutrino emission processes. For processes

ocurring over a sufficiently long timescale the temperature sensitivity of Q near

some emission threshold value may be sufficient to justify the use of a simplifying

approximation whereby the temperature Θ is held fixed at the threshold value in

question, thereby determining the value of s and hence of the creation rate ∇µsµ.

This will reduce the number of dynamically independent components from nine to

eight (or, in the chemical equilibrium case, from eight to seven) so that (A.43) will

no longer be needed as a dynamical equation of the system, but will merely serve for

the purpose of calculating the corresponding value of Q in case it might be needed.

A simple extreme special case of such a fixed temperature thermodynamically open

variant of the model is the zero temperature limit for which Θ and s both vanish.

References

1. B. Carter and N. Chamel, Int. J. Mod. Phys. D13, 291 (2004).
2. B. Carter and N. Chamel, Covariant analysis of Newtonian multi-fluid models for

neutron stars: II Stress-energy tensors and virial theorems, astro-ph/0312414.
3. B. Carter and I. M. Khalatnikov, Rev. Math. Phys. 6, 277 (1994).
4. R. Prix, Phys. Rev. D69, 043001 (2004).
5. R. Prix, G. L. Comer and N. Andersson, Mon. Not. R. Astron. Soc. 348, 652 (2004).
6. S. Yoshida and Y. Eriguchi, Mon. Not. R. Astron. Soc. 347, 575 (2004).
7. L. Lindblom and G. Mendell, Phys. Rev. D61, 104003 (2000).
8. B. Carter, D. Langlois and D. M. Sedrakian, Astron. & Astrophys. 361, 795 (2000).
9. B. Carter, Covariant theory of conductivity in ideal fluid or solid media, in Relativistic

Fluid Dynamics, C.I.M.E., Noto, May 1987, Lecture Notes in Mathematics, Vol. 1385,
eds. A. M. Anile and Y. Choquet-Bruhat (Springer-Verlag, Heidelberg, 1989),
pp. 1–64.

10. B. Carter, Proc. Roy. Soc. London A433, 45 (1991).
11. D. Langlois, D. Sedrakian and B. Carter, Mon, Not. R. Astron. Soc. 297, 1198 (1998).
12. W. Israel and J. M. Stewart, Proc. Roy. Soc. London A365, 43 (1979).
13. I. Prigogine, Thermodynamcs Off Irreversible Processes (Wiley, New York, 1967).


