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Abstract

The outer layers of a neutron star are supposdaetéormed of a solid Coulomb lattice of neu-
tron rich nuclei. At densities above neutron drgngdity (about one thousandth of nuclear saturation
density), this lattice is immersed in a neutron fluid. Bragg scattering of those dripped neutrons by
the nuclei which has been usually neglected is investigated, within a simple mean field model with
Bloch type boundary conditions. The main purposehdf work is to provide some estimates for the
entrainment coefficients, as required for hydrodynamical two fluid simulations of neutron star crust
[nucl-th/0402057, astro-ph/0408083], which relate the momentum of one fluid to the particle cur-
rents of the other two fluids [Sov. Phys. JETP(4276) 164]. The implicatins for the quilibrium
neutron star crust structure are also briefly discussed.
0 2004 Elsevier B.V. All rights reserved.

1. Introduction

In a typical neutron star (with mass about one and a half that of the sun), a solid phase
of neutron rich nuclei, hence forming the crust, is expected to occur from the surface down
to about~ 1 km in depth where the pressure and density are so high that the nuclei may
be strongly deformed and adopt “exotic” shapes [4]. Inside the crust, above the neutron
drip densitypgrip > 10t g cni3, free neutrons are found to coexist with the nuclei. Below

E-mail addressnicolas.chamel@obspm.fr (N. Chamel).

0375-9474/$ — see front mattér 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysa.2004.09.011



110 N. Chamel / Nuclear Physics A 747 (2005) 109-128

the crust, the nuclei merge into a uniform mixture of nucleons and perhaps of some other
mesons.

Bragg scattering of the dripped neutrons by the nuclei, which is analogous to the scat-
tering of valence electrons by ions in ordinary solids, has been usually neglected whereas
it may be of quantitative importance for evaluating the processes involved in phenomena
such as pulsar glitches. This issue has beainted out by a few authors [5-7] and band
effects, namely the opening of band gaps in the single particle energy spectrum, have been
actually estimated in a simpléd one-dimensional case [8].

In a preceeding work [1,2] we have introduced a macroscopic effective imassle-
vant for hydrodynamical simulations, such that the momentum of the neutron superfluid
is given by the mean neutron velocity times this effective mass in the crust rest frame. In
a (super)fluid mixture, in general the monem of one species is a linear combination
of the particle currents of the other components. This is known as the entrainment effect
[3]. We have shown how to obtain these entrainment coefficients in a two fluid neutron
star model from the effective mass.. Our analysis is complementary to the two fluid de-
scription of neutron star core, based on the Fermi liquid theory (see Borumand et al. [10]
and references therein), whose relativigtaneralisation has been recently performed by
Comer et al. [11] via @—w» mean field model.

Particle transport in the inner crust igliuced by displacement$ the whole superfluid
and it can thus be seen [9] that it is therefore not very sensitive to the superfluid energy
gap unlike thermal properties such as the specific heat. The main effect of the pairing in-
teraction is actually to lead @ smearing of the sharp neutron Fermi surface. Since at the
densities of interest, the pairing gap is typically much smaller than the Fermi energy, cor-
rections of the effective mass due to pairing correlations are expected to be small. We shall
therefore neglect as a first approximation pairing interaction (as in the works of Borumand
et al. [10] and Comer et al. [11]).

Since the pionnering Hartree—Fock calculations of Negele and Vautherin [12], more or
less arbitrary boundary conditions have usuékgen applied. In particular the so-called
“Wigner—Seitz approximation”, whereby nuclei are treated as if isolated, has been widely
used. Whereas this approximation would be appropriate for describing nucleons that are
clustered around lattice nodes, it is more sfimnable for the dripped neutrons which
are delocalized over the crust. This meamest tone has necessarily to consider the whole
medium and apply globaoundary conditions. In the case gpariodic lattice of nuclei, as
a result of the well-known Floquet—Bloch theorem [13], the problem can still be reduced
to the so-called Wigner—Seitz cell (not to be confused with the W—S sphere) namely some
“elementary” polyhedron surrounding a nuclei whose shape is completely determined by
the lattice structure, supplemented withoBh type boundary conditions. The single par-
ticle energy spectrum is composed of a set of analytic functigifk} (in the following
we shall use brackets for functional dependence in order to avoid confusions with mere
multiplication) of the momenturk (related to the translational symmetry), each sheet in
momentum space being specified by a band irdéassociated with rotational symmetry).

Recently Magierski et al. [6] have suggedtthat shell effects arising from “unbound”
neutrons may be important for neutron star crust structure and have carried out Skyrme—
Hartree—Fock calculations in a cubic boxthvperiodic boundary conditions. However,
such a choice of boundary conditions does not prigecount for Bragg scattering since
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the ensuing single particle states are only those associated with vanishing Bloch momen-
tum. Besides the Wigner—Seitz cell, which is taken as a cube there, is cubic only in a simple
cubic lattice.

In order to prepare the way to more realistic calculations, we shall briefly review band
theory and some key solid state physics tecimvhich may not be familiar to the reader.
We shall then discuss some results for dripped neutrons in the inner crust, described within
a mean field model.

2. Inner layer of the crust
2.1. Mean field model

In the absence of any previous calculation of neutron band structure except for a simple
1D model [8], even at the simplest level of approximation, we shall adopt the single particle
model of Oyamatsu and Yamada [8], to estimate the effective mass of the dripped neutrons
in the bottom layers of the inner crust. Previously, we only considered slab shaped and rod
like nuclei for simplicity [1]. The effective mass was found to be very close to the bare
mass. The reason was that the region we were focusing on was nearly homogeneous. In
the present work, we shall extend the same analysis for lower densities where the crust
is assumed to be composed of spherical@iumrranged in a body centered cubic lattice.
Simple cubic and face centered cubic structures will also be considered for comparison.
We shall also report results for the spherical and cylinder hole phases near the crust—core
transition layer.

In the model suggested by Oyamatsu et al. [8], both bound and dripped neutrons are
assumed to be described as independeticpes moving in a “background” phenomeno-
logical mean field. The neutron single particle states thus obey the following Schrédinger
equation

hZ
——Ap+Vo==Ep. (1)
2m

We further assume that nuclei are located at tlodes of an infinite crystal lattice. The
single particle periodic potentid is thus constructed from the potentidlof Oyamatsu
and Yamada given in the Wigner—Seitz sphere by the following procedure:

V{r}:ZU{r — T}, (2
T

where the sum goes over all lattice sites, iTex ijzl ¢%e,, wheret“ are integers ane,
basis lattice vectors. The potentidlwas defined by Oyamatsu and Yamada as (Eq. (2.5)
of Ref. [8])
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)
Uolr} = # “

n



112 N. Chamel / Nuclear Physics A 747 (2005) 109-128

n " PR IR IR T N 1 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
r (fm) r (fm)

Fig. 1. Single particle central potential (left) andrsgdrbit coupling potential (right) in the W-S sphere for the
lowest baryon density considereg = 0.03 fm~3 from model | of Ref. [8].

wherev is a potential energy density functional of homogeneous nuclear matter. The local
neutron and proton densities were obtained from a zero temperature Thomas—Fermi calcu-
lation in the W=S approximation. The energy density functional was parametrised such as
to reproduce the properties of terrestrial nuclei ongh&tability line and the equation of

state of Friedman and Pandharipande for both pure neutron matter and symmetric nuclear
matter. The parameter(as well as the spin—orbit coupling parameters, see Section 4 be-
low) was adjusted so as to give reasonable values for the single particle ener§f&2bof

(for further details, see [8,31]). We have used the parameter sets of model | from Ref. [8].
We have neglected the spin—orbit coupling introduced by Oyamatsu and Yamada since it
is smaller by an order of magnitude compared to the central potential as shown on Fig. 1.
In order to take into account Bragg scattering, single particle states have to satisfy the
Floquet—Bloch theorem

olr + Ty =T (r). (5)

As a consequence, the Schroédinger Eq. (1) can be solved within any primitive cell [13],
among which the Wigner—Seitz one possesses the full symmetry of the lattice, with bound-
ary conditions given by (5). The Wigner—Seitz (W-S) cell is defined as the set of points that
are closer to a given lattice node than to any other. Exemples are shown for cubic crystals
on Fig. 2. Except for simple cubic lattice, the W-S cell is a complicated polyhedron. In the

work of Oyamatsu and Yamada, the lattice spacing was defineg,as Vééﬁ, whereVee
is the volume of the W-S sphere. In the present work, we have defined the lattice spacing
a for cubic lattices (cube length) such that the volume of the W=S polyhedron is equal to

that of the sphere.
2.2. Single particle energy spectrum

For each giverk, Eq. (1) with boundary conditions (5) will admit a discrete set of
eigenvalueg, (indexed by a Greek letter) referred as bands. Single particle energies will
be ordered such thah < & < --- which guarantees that for a given band, saythe
energy&, {k} will be continuous (besides it is analytic except for high symmetry points).
Unlike the W=S approximation, the single particle energy spectrum in the Bloch case has
a much more detailed structure.
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Fig. 2. Wigner—Seitz cell of cubic lattices (from left tigit) simple cubic, body centered cubic, face centered
cubic with conventional labelling of high symmetry points and lines [32].

It can be shown that the single particle energy is periodic in a “reciprocal” lattice [13]
whose nodes are given ¢ = Zg’zlﬁal“, where{, are integers and the dual basis is
defined by the dot products

19 . & =218 (6)

This means in particular that Eq. (has only to be solved for each momentknwithin a
domain known as the first Brillouin zone (BZ), i.e., the W=S cell of the reciprocal lattice.
By considering rotational symmetry, it can be shown that all the relevant information about
the spectrum is contained within some “irreducible” domain of the BZ [14]. The solutions
of Magierski et al. [6] are only those associated with the center of the first Brillouin zone,
namelyk = 0, provided the lattice is simple cubfor body centered or face centered cubic
structures, their solutions are not of the Bloch type).

We have solved the Schrodinger equatidhwith Bloch type boundary conditions (5)
variationally by a finite plane wave expansion of the single particle wavefunctions, namely

1 .
oklr) = P (K kO, (7
v Vcell ZK:
with an energy cutoffcyiof such that
m2(k 4 K)?
RO e o (8)

2m
The nuclear structures that we have considered are illustrated on Fig. 3.

2.3. Effective mass

The zero temperature many body ground stataérely obtained by filling all the single
particle states whose enerfy{k} is lower than the Fermi energy. For each total neutron
densitynp, the Fermi energy is thus determined via the integral over the first Brillouin
zone (B2)

g
nn:W;/d3kﬁ{u—€a{k}}, )
BZ
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Fig. 3. Nuclear configurations taken from Ref. [31&) spherical nuclei in a body centered cubic lattice,
(b) “spaghettis” in 2D hexagonal lattice, (c) “lasagn@) “antispaghetti” in a 2D hexagonal lattice and (e) “bub-
bles” in a body centered cubic lattice.

where we have explicitely introduced the Fermi distribution by the Heaviside unit step
distribution®{x} = 1 if x > 1 and zero otherwise, allowing each momentum state to be
g-fold degenerate (hege= 2 to account for the spin degeneracy). In particular, the ground
state will be characterized by the Fermi surface bounding the occupied part of momentum
space. In general the Fermi surface will consist of disconnected pieces, each piece being
given by&,{k} = u.

Introducing the dripped or free neutron densitythe effective mass (from which the
entrainment coefficients can be obtained [2]) is defined [1] by the simple formula

n
* = T 10
m= (10)
where the mobility scalakC is given by (summation over energy bands is implicit)
1 g
K==—2_ dSk, 11
3 @)% f iy 1
F
and the group velocity is defined by the usual expression
1
v=—ViE. (12)

h

This mobility scalar is relatkto the electric conductivity by the formulac = 27K
in which e andt are the electric charge per particle and some characteristic relaxation
time, respectively. In terms of the effectiveass, this formula reduces to the well-known
expression [13F = ne?t/m,.

In the following sections, we have defined the dripped neutron states to be those states
whose energy is positivé, {k} > 0 (the energy origin being taken as the largest possible
value of the potential).



N. Chamel / Nuclear Physics A 747 (2005) 109-128 115

2.4. Wigner—Seitz approximation

The W-S cell of body or face centered (unlike simple) cubic lattice is a nearly spherical
polyhedron, this is the origin of the so-call®/—S approximation [15], according to which
the W=S cell is taken as a sphere and more or less arbitrary boundary conditions are applied
on the single particle wave functions. For instance, the prescription given by Negele and
Vautherin [12] requires that on the sphere teliradial wave functions with even orbital
angular momentum quantum numbesanish and derivatives of the radial wave functions
with odd! vanish. Besides the density needs to be averaged in the vicinity of the cell edge
in order to prevent the occurrence of unphysical density fluctuations. Within the current
framework, the Floquet—Bloch theorem (5) ensures that the local total neutron density
defined by

2
nalr) = (Zi)ngd?’k!wak{rn o — Ealky) (13)
“ BZ
possesses the lattice symmetry, the single particle wavefunctions being normalized as
1
oo | lpakir}]*=1. (14)
cell

cell

This means in particular that the density gradi€nt{T} will vanish whenever the crystal

is left invariant under space inversion, which means that the density will be nearly constant
(to first order) inside nuclei. In cases for whiclvelongs to a symmetry plane, the density
gradient will have no components orthogonal to this plane. This means that the density
profile will be essentially flat (to first order) around the cell boundary, along directions
perpendicular to the W=S faces whenever tieefis parallele to any symmetry plane. This

is true for the simple cubic and face centered cubic W=S cells. This is also true for the body
centered cubic W-S cell exaling the hexagonal faces.

3. Numerical methods
3.1. Brillouin zone integrations

Brillouin zone integrations are involved in many solid state physics calculations, as,
for instance, in the particle density (13). Analytic expressions for the integrand are usually
unknown (except for a few academic cases), therefore one has to rely on numerical schemes
based on discrete summations. Since the computation of energy bands is usually the most
time consuming part of solid state calculations, several techniques have been developed
in order to compute these integrals with the smallest number of terms. One of the most
successful methods, which was pioneered by Baldereshi [16] and subsequently improved
by Chadi—Cohen [17], is based on a weighted sum over a set of special symmetry points.
The main idea relies on the fact that a functiffk} which has the full symmetry of the
reciprocal lattice, can be expanded ovemsyetrized plane waves (in the following we
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shall consider only cubic structures, for which there is no glide plane or screw symmetry
axis [32])

-~ 1 )
flky=Y"fi=> PTk (15)
— " |P -

whereP is any rotation of the lattice andP| their number (lattice vectors are ordered as
ITs,| = |Ts,| whenever; > s2). The integral of this function over the first Brillouin zone
is rewritten as a sum over a set of unequivalent pdinteith weightw{k ;}

== f fikyd* = Zw{k VF{kj} + Ry, (16)

j=1

Zw{k;}=1, (17)

where the residua‘kN is given by

==Y f Zw{k }|7>| Ze”’T R (18)

s>0 j=1

By choosing the point&; such that all plane waves are exactely zero forsallp to
some largestmax the residual will contain only terms with lattice vectd§ > [T, |
for which the contribution will be vanishingly small provided the functigtk} is suffi-
ciently smooth. Eventually the integral is approximated by

N

— f £ =Y " wik;hf k) (19)

j=1

The determlnatlon of these special poiktsand their associated weightgk ;} was rather
complicated in the first scheme involving @cursion process. Several authors have pro-
vided formulae (see [18] and references therein).

The convergence of the discrete sum with respect to the number of special points is
exponential for smooth integrands and an error of less than one per cent can be attained
within a few points only. Unfortunately the presence of a sharp Fermi surface (especially in
any metallic solid) introduces discontinuitigsthe integrands, such as in Eq. (13), which
spoil the convergence. This method is thereby most satisfactory for insulating materials and
semiconductors. Nevertheless, accurate results can still be obtained with a small number of
special points by “smearing” the Fermi surface [19]. Since the volume of the first Brillouin
zone and of the Wigner—Seitz cell are related by

Vez = (20)

the number of special points for a given precision is smaller for larger cells. We have tested
the special point method by calculating the integral
1

/ k> d3k, (21)

Vaz
BZ
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Fig. 4. Relative error in the computation ofégrals (21) with respect to the number of points.
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Fig. 5. Density as a function of the Fermi energy for thepty” lattice model (body centered cubic lattice, lattice
parameter= 30 fm), with one single special point and with different smearing paramesteis the number of
approximants andl is the smearing width, see Ref. [19] for the details).

which is equal to 14, 3/8, 19/32 in units of (27 /a)? for simple cubic, body centered
cubic and face centered cubic lattice, respectively. The convergence is illustrated on Fig. 4.
We have also shown on Fig. 5 how the smearing procedure of Methfessel et al. [19] could
improve the convergence in the extreme case of one single special point, by computing
the total neutron density, as a function of the Fermi energydefined in Eq. (9) in the
Shockley “empty” lattice test [20] for which we have
()

“ 322\ &

nn

(22)



118 N. Chamel / Nuclear Physics A 747 (2005) 109-128

3.2. Fermi energy

The determination of the Fermi energy is numerically expensive as it requires the calcu-
lation of all occupied single particle states (unlike the effective mass which depends only
on the highest occupied states on the Fernfese). The computatioheaost is significant
since the number of levels is of the order of several hundreds up to nearly one thousand.
Nonetheless a useful estimate of the Fermi energy with an accuracy of a few percents can
still be easily obtained as follows. First, amg all occupied statesne should distinguish
between core states whose wavefunction is localised in the neighborhood of nuclei and
valence or conduction states whose wavefunction extends over all space. The core states
are easily obtained by finding the bound states of one isolated nucleus. Having found the
number of such states, let us shiyore, EQ. (9) can be written as

8 8
M= Gy VBNt s Zf k2 {1 — EalkH P {Ealk) — Ecore).  (23)
Bz

whereqoreis the energy of the highest core state. The determination of the Fermi energy is
essentially a state counting procedure which becomes less and less sensitive to the detailed
structure of the energy spectrum as the number of particles is increased. Consequently
assuming that the valence states can be roughly described as non-interacting particles, the
previous equation thus leads to the following estimate:

2 2\ 2/3
> Ecore+ % ((nn - ncore)%) ) (24)
where from (20) we havecore= g Ncore/ Veell-

For instance, for the baryon density = 0.03 fm~3, we found for the core states: three
s states, twop states, twad states, onef state and ong state. The total number of
core states is thus equal f¢.qre = 35 and the Fermi energy is approximately given by
u =~ 18.02 MeV, which is about 5% larger than the value= 17.16 MeV, obtained by
direct integrations of (9) via special points. The value of the Fermi energy was also found
to be completely unsensitive to the lattice structure, which is due to the fact that Eq. (9)
does not explicitely depend on the precise values of energy bands but only on their number
in a given energy range.

3.3. Fermi surface integrations

Calculations of the effective mass (10) require a fine mesh sampling of the Fermi sur-
face. One of the most accurate methods for penfog Fermi surface integrations is based
on the Gilat—-Raubenheimer (GR) scheme [21]. The integration over the Fermi surface is
first reduced by symmetry to the irreducible wedge of the first Brillouin zone which is
partitioned into microcells. The integral is thereby discretized as a sum over the microcells
with suitable weight factors to account for the fact that microcells may overfill each wedge.
The Fermi surface is then approximated by a planside the microcells which it intersects,
so that the integration within each celin be calculated analytically [22].

We have implemented the original linear extrapolation method with cubic cells [23].
The energy is linearly extrapolated from the values of the energy and velocity at the center
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of the cell. This scheme therefore requires the energy bands as well as their gradients,
whose evaluation with plane waves is straightforward via the Hellmann—Feynman theorem
[24], namely

hk K
Ve Y T g K) (25)
m K m
with the normalisation of the wavefunction given by
>l =1 (26)
K

The GR method seems to be not so popular as the tetrahedron method in solid state physics,
in which the irreducible domain is divided into tetrahedra and the energy is linearly inter-
polated from its values at the four corneffseach tetrahedron [25,26]. One of the main
reasons is that the calculation of the velocity may be computationally expensive with more
elaborate basis functions than plane wavesveitheless the linear extrapolation of the
energy within the GR method, which is a first order Taylor expansion around the cell cen-
ter, is a better approximation than an interpolation. Since in the present case the integrand
in Eq. (11) involves the energy gradient, the GR method seems much more appropriate.
Besides interpolation faces the band crosgingblem: the ordering of the energy bands
with increasing energy ensures that the energy is continuous for a given band but does
not prevent discontinuities in the energy gradient from occuring. Unlike extrapolation, in-
terpolation will yield an incorrectly small gradient resulting in a loss of convergence (see
[27—29] for a discussion about systematic errors).

In order to test this scheme, we have employed the “cubium” toy model, i.e., a simple
cubic crystal with one singleband whose momentum dispersion in Cartesian coordinates
is given by&{k} = —(cosk, + cosk, + cosk;). Analytic expressions for the density of
single particle states at ener§ydefined by

dn g dSe
dé ~ (2n)3h v
are available in terms of the elliptic integral of the first kind [30]. As can be seen on Fig. 6
(g = 2) the GR method yields results in very good agreement with the analytic expressions,

in particular in the vicinity of the critical points associated with= 0 (producing the
“kinks” in the density of states).

NE} = (27)

4. Results

We have considered the three types of cuhttices, namely simple cubic, face cen-
tered cubic and body centered oculfior spherical nuclei and bules (i.e., periodic lattice
of “holes” containing dripped neutrons in uniform nuclear matter). The Fermi surface inte-
grations have been carried out with of the orderdf0® cubic cells, for which the relative
deviation was a few percents as shown on Figs. 7 and 8.

The effective mass:, shown on Fig. 10 has been found to be greatly enhanced due to
Bragg scattering, reaching, ~ 15n at a total baryon density, = 0.03 fm—3. Deeper
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Fig. 6. Density of states of the cubium model conguutvith the GR method and compared with the analytic
expressions given by Morita et al. [30].
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np = 0.055 fm—3 with nuclei in a body centered cubic lattice.

inside the crust, the renormalization is smaller, tending to~ m at very high density as
the single particle potential tends to a constant. We have also shown on Fig. 11 the trans-
verse effective neutron mass in the “exotic” phases [1] including the “antispaghetti” layer,
where non-spherical nuclei occur (only the velocity components respectively perpendicu-
lar to the slabs or to the rods, for the “lasagna” or “(anti)spaghetti” phases are included in
Eqg. (11) for the mobility scalathe other velocity componemhave the same expressions
as those of a non-interacting gas and therefore the corresponding effective mass coincide
with the ordinary mass). The dependence on the lattice structure is rather weak. Numeri-
cal results are summarized in Appendix A. Wavh also carried out the calculations with
the estimate of the Fermi energy suggested in Section 3.2. While this is usually a good
approximation for bulk quantities such as ttenduction neutron density, the errors are
much larger for quantities depending only on states at the Fermi level. In particular, the re-
sulting effective mass is about 20% lower at baryon densjty 0.03 fm~2, having value
m,/m =~ 14, where the relative error in the conduction neutron density is less than one
percent.

In order to understand the origin of this effective mass enhancement, we have compared
the Fermi surface aref with its expression obtained from the assumption that the dripped
neutrons form an ideal Fermi gas of densitywhich is given by

Sgas= 4mg(67%n/g)7". (28)

We have found that the Fermi surface area is strongly reduced in the outer layers compared
to that of the sphere, whereas it tends to its uniform expression (28) near the crust-core
interface as illustrated on Fig. 9. Itis first to be remarked that the “enclosed” Fermi volume
depends only on the density, as is easily seerEq. (9) and therefore does not depend

on the particular shape of the Fermi surface. It is well known that among atlidised
surfaces of a given volume, the sphere has the minimum surface area. In the present case,
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however, the opening of numerous band gaps in the single particle energy spectrum leads
to a Fermi surface composed disjoint openpieces. By band gaps, we mean avoided
crossings of energy band sheetsiapace. This is the reason why the Fermi surface area

is found to be smaller than that of the sphere in the low density layers of the crust where
the gaps take their largest values.
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Fig. 11. Transverse effective neutron m&aé/m for “exotic” configurations.

Itis quite instructive to evaluate the mean Fermi veloditydefined by

1
vF=— @ vdSk. (29)
Sk
F
It is readily seen that it is expressiblin terms of the Fermi surface argsand Fermi

velocity vgas Of the non-interacting neutron gas, as

l_}F i Sgas m

= . 30
Ugas Sk my ( )

For instance, at the lowest dgity we considered, namehy, = 0.03 fm~3, the mean Fermi
velocity is about one third the Fermi velocity of the gas. The ratio increases to one half
at np = 0.055 fm~3 and tends to one as the density approaches the crust—core transition
density. This is a clear and intuitive manifestation of Bragg scattering.

The spin—orbit coupling, as we have seen, is very small compared to the central po-
tential in the bottom layers we have considered (see Fig. 1). However, such a term would
probably not be negligible in the lower density regions of neutron star crust. The presence
of this term in the Schrddinger equation (1) preserves the lattice symmetry which implies
that single particles wave functions can still be expressed as Bloch states. However, the
spin—orbit coupling breaks the spin symmetry and therefore raise some degeneracy. As a
result, this will open new gaps in the energy spectrum, in the vicinity of which the group
velocity will be vanishingly small. Consequently, it can be seen from (11) and (10) that the
resulting effective masses would be expedde increased by the spin—orbit coupling
since the density would not be much affected. This conclusion is confirmed by a numerical
calculation in the “spaghetti” phase. The computations are quite involved since the size
of the secular (complex) matrices is doubl&de have taken into account the spin—orbit
coupling given by Oyamatsu and Yamada (E2}12) of Ref. [8]), which is given in the
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Fig. 12. First Brillouin zone and irreducible domain of an &ganal lattice with the conventional labeling of high
symmetry points and lines.

W-S approximate cell (a cylinder in this case directed along thgis) by an expression
of the form

1 dn d 1
Ws{r} = ; (Ald—rb - )\ZE(Hn - np)) Elzazv (31)
wherer is the distance to the cylinder axis,the angular momentum component along

the cylinder axis and, the diagonal Pauli spin matrix. The parametersand A, were
adjusted so as to give the correct sequence of single particles stat&8mfWe have used

the values of model | from Ref. [8] namely = 1758 MeV fm® andi, = 16.39 MeV fnP.

We have carried out the calculation at the total baryon demsity: 0.06 fm=2 for the
hexagonal lattice. Since the densities varimgathly, the spin—orbit coupling has a small
effect, yet the opening of band gaps can be clearly observed as shown on Fig. 13 (see also
Fig. 14). The transverse effective mass is found to be slightly larger with than without
spin—orbit coupling as expected, respectively,/m = 1.37 andm;-/m = 1.35 while the

Fermi surface area is smaller, respectivéhy, Sgas= 0.88 compared t&F/Sgas= 0.89.

5. Conclusion

We have considered the band effects in neutron star crust induced by Bragg scatter-
ing of dripped neutrons upon the solid latticerauclei. This is the analog in a nuclear
context, of a well-known phenomenon in andry solid state physics whereby valence
electrons are being scattered by ions leading notably to an understanding of semicon-
ductor band gaps. Based on a mean field model with Bloch type boundary conditions,
we have computed the effective dripped neutron macroscopic massecessary for
evaluating the entrainment coefficients in hydrodynamical descriptions of neutron stars
[1,2]. We found that this effective mass is increased by several hundred percents com-
pared to the ordinary neutron mass in the middle layers of the inner crust but becomes
negligible near the crust—core boundary where nuclei merge into a uniform mixture
of neutrons, electrons and protons (and perhaps of some other mesons). We have also
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Fig. 13. Neutron band structure, with (thin lines) ani¢thaut (thick lines) along high symmetry directions shown
on Fig. 12 for an hexagonal lattice of gpeetti (rod) like nuclei at baryon densiiy = 0.055 fr3.
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Fig. 14. Zoom of the region in the box of Fig. 13. Band splittings induced by spin—orbit coupling can be clearly
seen.

found that the lattice structure plays a mimmle. However, the differences are sig-
nificant between 3D crystals and the 1D or 2D liquid crystal configurations that were
previously studied within the same model (respectively, slab shaped and rod like nu-
clei).

The present results also suggest that the widely used Wigner—Seitz approximation,
whereby Bragg scattering is neglected, may be questionable for the study of neutron star
crust. In particular, it is to be remarked that the very large values of the effective mass
m, that we found in the middle layers tend to indicate that dripped neutron shell (actu-
ally band) effects may have significant consequences for the neutron star crust equilibrium
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structure compared to thabtained in the W-S approximati. It has been recently shown
that the composition of the inner crust of neutron star is quite sensitive to the proton
shell effects [33]. The unbound neutron shell effects have been investigated by Magier-
ski and Heenen [6] who suggested that such quantum effects play an important role in the
determination of the neutron star crust equilibrium structure since the energy difference
between different nuclear shapes, lattice structures and compositions is typically small.
Their analysis was based on a semicleaisapproach. They have recently carried out
Skyrme—Hartree—Fock calculations [34]tlwith ordinary periodi boundary conditions.

The implementation of Bloch type boundangraitions within more realistic models, es-
pecially taking into account mgron pairing as outlined recently [9], should therefore be
further investigated.
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Appendix A. Numerical results

Effective dripped neutron mass, for spherical nuclei and bubbles in a body centered
cubic lattice:

np (fM=3)  n, (fm=3) n/ng  my/m
0.03 0.029 0.94 18
0.055 0.053 0.95 5
0.0855 0.0826 0.98 .07

Transverse effective dripped neutron méms‘pasta” phases: “spaghettis” (hexagonal
lattice), “lasagna” and cylinder holes (hexagonal lattice):

np fM=3)  nn(fM=3)  n/nn mk/m

0.06 0.0581 0.9553 1.347
0.065 0.063 0.9578 1.242
0.07 0.0678 0.9606 1.174
0.074 0.0716 0.9633 1.124
0.076 0.0735 0.9634 1.031
0.0775 0.0749 0.9646 1.029
0.08 0.0773 0.9666 1.025
0.082 0.0792 0.9687 1.020
0.083 0.0802 0.9734 1.010
0.084 0.0811 0.9746 1.003

0.085 0.0821 0.9762 1.001
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