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Abstract

The outer layers of a neutron star are supposed tobe formed of a solid Coulomb lattice of ne
tron rich nuclei. At densities above neutron drip density (about one thousandth of nuclear satura
density), this lattice is immersed in a neutron fluid. Bragg scattering of those dripped neutr
the nuclei which has been usually neglected is investigated, within a simple mean field mod
Bloch type boundary conditions. The main purpose of this work is to provide some estimates for t
entrainment coefficients, as required for hydrodynamical two fluid simulations of neutron sta
[nucl-th/0402057, astro-ph/0408083], which relate the momentum of one fluid to the particl
rents of the other two fluids [Sov. Phys. JETP 42(1976) 164]. The implications for the equilibrium
neutron star crust structure are also briefly discussed.
 2004 Elsevier B.V. All rights reserved.

1. Introduction

In a typical neutron star (with mass about one and a half that of the sun), a solid
of neutron rich nuclei, hence forming the crust, is expected to occur from the surface
to about� 1 km in depth where the pressure and density are so high that the nucle
be strongly deformed and adopt “exotic” shapes [4]. Inside the crust, above the n
drip densityρdrip � 1011 gcm−3, free neutrons are found to coexist with the nuclei. Be
E-mail address:nicolas.chamel@obspm.fr (N. Chamel).

0375-9474/$ – see front matter 2004 Elsevier B.V. All rights reserved.
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the crust, the nuclei merge into a uniform mixture of nucleons and perhaps of some
mesons.

Bragg scattering of the dripped neutrons by the nuclei, which is analogous to the
tering of valence electrons by ions in ordinary solids, has been usually neglected w
it may be of quantitative importance for evaluating the processes involved in pheno
such as pulsar glitches. This issue has beenpointed out by a few authors [5–7] and ba
effects, namely the opening of band gaps in the single particle energy spectrum, hav
actually estimated in a simplified one-dimensional case [8].

In a preceeding work [1,2] we have introduced a macroscopic effective massm� rele-
vant for hydrodynamical simulations, such that the momentum of the neutron supe
is given by the mean neutron velocity times this effective mass in the crust rest fram
a (super)fluid mixture, in general the momentum of one species is a linear combinati
of the particle currents of the other components. This is known as the entrainment
[3]. We have shown how to obtain these entrainment coefficients in a two fluid ne
star model from the effective massm�. Our analysis is complementary to the two fluid d
scription of neutron star core, based on the Fermi liquid theory (see Borumand et a
and references therein), whose relativisticgeneralisation has been recently performed
Comer et al. [11] via aσ–ω mean field model.

Particle transport in the inner crust is induced by displacementsof the whole superfluid
and it can thus be seen [9] that it is therefore not very sensitive to the superfluid e
gap unlike thermal properties such as the specific heat. The main effect of the pair
teraction is actually to lead toa smearing of the sharp neutron Fermi surface. Since a
densities of interest, the pairing gap is typically much smaller than the Fermi energ
rections of the effective mass due to pairing correlations are expected to be small. W
therefore neglect as a first approximation pairing interaction (as in the works of Boru
et al. [10] and Comer et al. [11]).

Since the pionnering Hartree–Fock calculations of Negele and Vautherin [12], m
less arbitrary boundary conditions have usuallybeen applied. In particular the so-call
“Wigner–Seitz approximation”, whereby nuclei are treated as if isolated, has been w
used. Whereas this approximation would be appropriate for describing nucleons th
clustered around lattice nodes, it is more questionable for the dripped neutrons whi
are delocalized over the crust. This means that one has necessarily to consider the wh
medium and apply global boundary conditions. In the case of aperiodic lattice of nuclei, a
a result of the well-known Floquet–Bloch theorem [13], the problem can still be red
to the so-called Wigner–Seitz cell (not to be confused with the W–S sphere) namely
“elementary” polyhedron surrounding a nuclei whose shape is completely determin
the lattice structure, supplemented with Bloch type boundary conditions. The single p
ticle energy spectrum is composed of a set of analytic functionsEα{k} (in the following
we shall use brackets for functional dependence in order to avoid confusions with
multiplication) of the momentumk (related to the translational symmetry), each shee
momentum space being specified by a band indexα (associated with rotational symmetry

Recently Magierski et al. [6] have suggested that shell effects arising from “unboun
neutrons may be important for neutron star crust structure and have carried out Sk

Hartree–Fock calculations in a cubic box with periodic boundary conditions. However,
such a choice of boundary conditions does not properly account for Bragg scattering since
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the ensuing single particle states are only those associated with vanishing Bloch m
tum. Besides the Wigner–Seitz cell, which is taken as a cube there, is cubic only in a
cubic lattice.

In order to prepare the way to more realistic calculations, we shall briefly review
theory and some key solid state physics technics which may not be familiar to the read
We shall then discuss some results for dripped neutrons in the inner crust, described
a mean field model.

2. Inner layer of the crust

2.1. Mean field model

In the absence of any previous calculation of neutron band structure except for a
1D model [8], even at the simplest level of approximation, we shall adopt the single pa
model of Oyamatsu and Yamada [8], to estimate the effective mass of the dripped ne
in the bottom layers of the inner crust. Previously, we only considered slab shaped a
like nuclei for simplicity [1]. The effective mass was found to be very close to the
mass. The reason was that the region we were focusing on was nearly homogene
the present work, we shall extend the same analysis for lower densities where th
is assumed to be composed of spherical nuclei arranged in a body centered cubic latti
Simple cubic and face centered cubic structures will also be considered for comp
We shall also report results for the spherical and cylinder hole phases near the cru
transition layer.

In the model suggested by Oyamatsu et al. [8], both bound and dripped neutro
assumed to be described as independent particles moving in a “background” phenomen
logical mean field. The neutron single particle states thus obey the following Schröd
equation

− h̄2

2m
�ϕ + V ϕ = Eϕ. (1)

We further assume that nuclei are located at the nodes of an infinite crystal lattice. Th
single particle periodic potentialV is thus constructed from the potentialU of Oyamatsu
and Yamada given in the Wigner–Seitz sphere by the following procedure:

V {r} =
∑

T

U{r − T}, (2)

where the sum goes over all lattice sites, i.e.,T = ∑3
a=1 �aea , where�a are integers andea

basis lattice vectors. The potentialU was defined by Oyamatsu and Yamada as (Eq. (
of Ref. [8])

U{r} =
(

1√
πκ

)3 ∫
d3r ′ U0{r′}e−|r−r′|2/κ2

, (3)
U0{r} = δv

δnn
, (4)
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Fig. 1. Single particle central potential (left) and spin–orbit coupling potential (right) in the W–S sphere for t
lowest baryon density considerednb = 0.03 fm−3 from model I of Ref. [8].

wherev is a potential energy density functional of homogeneous nuclear matter. The
neutron and proton densities were obtained from a zero temperature Thomas–Ferm
lation in the W–S approximation. The energy density functional was parametrised s
to reproduce the properties of terrestrial nuclei on theβ stability line and the equation o
state of Friedman and Pandharipande for both pure neutron matter and symmetric
matter. The parameterκ (as well as the spin–orbit coupling parameters, see Section
low) was adjusted so as to give reasonable values for the single particle energies o208Pb
(for further details, see [8,31]). We have used the parameter sets of model I from Re
We have neglected the spin–orbit coupling introduced by Oyamatsu and Yamada s
is smaller by an order of magnitude compared to the central potential as shown on
In order to take into account Bragg scattering, single particle states have to satis
Floquet–Bloch theorem

ϕk{r + T} = eik·Tϕk{r}. (5)

As a consequence, the Schrödinger Eq. (1) can be solved within any primitive cel
among which the Wigner–Seitz one possesses the full symmetry of the lattice, with b
ary conditions given by (5). The Wigner–Seitz (W–S) cell is defined as the set of poin
are closer to a given lattice node than to any other. Exemples are shown for cubic c
on Fig. 2. Except for simple cubic lattice, the W–S cell is a complicated polyhedron. I
work of Oyamatsu and Yamada, the lattice spacing was defined asaOy = V1/3

cell , whereVcell
is the volume of the W–S sphere. In the present work, we have defined the lattice s
a for cubic lattices (cube length) such that the volume of the W–S polyhedron is eq
that of the sphere.

2.2. Single particle energy spectrum

For each givenk, Eq. (1) with boundary conditions (5) will admit a discrete set
eigenvaluesEα (indexed by a Greek letter) referred as bands. Single particle energie
be ordered such thatE1 < E2 < · · · which guarantees that for a given band, sayα, the
energyEα{k} will be continuous (besides it is analytic except for high symmetry poin

Unlike the W–S approximation, the single particle energy spectrum in the Bloch case has
a much more detailed structure.
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Fig. 2. Wigner–Seitz cell of cubic lattices (from left to right) simple cubic, body centered cubic, face cente
cubic with conventional labelling of high symmetry points and lines [32].

It can be shown that the single particle energy is periodic in a “reciprocal” lattice
whose nodes are given byK = ∑3

a=1�a la , where�a are integers and the dual basis
defined by the dot products

la · eb = 2πδa
b. (6)

This means in particular that Eq. (1)has only to be solved for each momentumk, within a
domain known as the first Brillouin zone (BZ), i.e., the W–S cell of the reciprocal lat
By considering rotational symmetry, it can be shown that all the relevant information
the spectrum is contained within some “irreducible” domain of the BZ [14]. The solu
of Magierski et al. [6] are only those associated with the center of the first Brillouin z
namelyk = 0, provided the lattice is simple cubic(for body centered or face centered cu
structures, their solutions are not of the Bloch type).

We have solved the Schrödinger equation (1) with Bloch type boundary conditions (5
variationally by a finite plane wave expansion of the single particle wavefunctions, na

ϕk{r} = 1√
Vcell

∑
K

ϕ̃k{K}ei(k+K)·r, (7)

with an energy cutoffEcutoff such that

h̄2(k + K)2

2m
< Ecutoff. (8)

The nuclear structures that we have considered are illustrated on Fig. 3.

2.3. Effective mass

The zero temperature many body ground state is merely obtained by filling all the singl
particle states whose energyEα{k} is lower than the Fermi energyµ. For each total neutro
densitynn, the Fermi energyµ is thus determined via the integral over the first Brillou
zone (BZ)

g ∑∫ { }

nn =

(2π)3
α BZ

d3k ϑ µ − Eα{k} , (9)
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Fig. 3. Nuclear configurations taken from Ref. [31]: (a) spherical nuclei in a body centered cubic latti
(b) “spaghettis” in 2D hexagonal lattice, (c) “lasagna”,(d) “antispaghetti” in a 2D hexagonal lattice and (e) “bu
bles” in a body centered cubic lattice.

where we have explicitely introduced the Fermi distribution by the Heaviside unit
distributionϑ{x} = 1 if x > 1 and zero otherwise, allowing each momentum state t
g-fold degenerate (hereg = 2 to account for the spin degeneracy). In particular, the gro
state will be characterized by the Fermi surface bounding the occupied part of mom
space. In general the Fermi surface will consist of disconnected pieces, each piec
given byEα{k} = µ.

Introducing the dripped or free neutron densityn, the effective mass (from which th
entrainment coefficients can be obtained [2]) is defined [1] by the simple formula

m� = n

K , (10)

where the mobility scalarK is given by (summation over energy bands is implicit)

K = 1

3

g

(2π)3h̄

∮
F

v dSF, (11)

and the group velocity is defined by the usual expression

v = 1

h̄
∇kE . (12)

This mobility scalar is related to the electric conductivityσ by the formulaσ = e2τK
in which e and τ are the electric charge per particle and some characteristic relax
time, respectively. In terms of the effective mass, this formula reduces to the well-know
expression [13]σ = ne2τ/m�.

In the following sections, we have defined the dripped neutron states to be those

whose energy is positiveEα{k} > 0 (the energy origin being taken as the largest possible
value of the potential).
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2.4. Wigner–Seitz approximation

The W–S cell of body or face centered (unlike simple) cubic lattice is a nearly sph
polyhedron, this is the origin of the so-called W–S approximation [15], according to whic
the W–S cell is taken as a sphere and more or less arbitrary boundary conditions are
on the single particle wave functions. For instance, the prescription given by Nege
Vautherin [12] requires that on the sphere radius, radial wave functions with even orbit
angular momentum quantum numberl vanish and derivatives of the radial wave functio
with oddl vanish. Besides the density needs to be averaged in the vicinity of the cel
in order to prevent the occurrence of unphysical density fluctuations. Within the cu
framework, the Floquet–Bloch theorem (5) ensures that the local total neutron d
defined by

nn{r} = g

(2π)3

∑
α

∫
BZ

d3k
∣∣ϕαk{r}∣∣2ϑ{

µ − Eα{k}} (13)

possesses the lattice symmetry, the single particle wavefunctions being normalized

1

Vcell

∫
cell

d3r
∣∣ϕαk{r}

∣∣2 = 1. (14)

This means in particular that the density gradient∇nn{T} will vanish whenever the crysta
is left invariant under space inversion, which means that the density will be nearly co
(to first order) inside nuclei. In cases for whichr belongs to a symmetry plane, the dens
gradient will have no components orthogonal to this plane. This means that the d
profile will be essentially flat (to first order) around the cell boundary, along direc
perpendicular to the W–S faces whenever the face is parallele to any symmetry plane. T
is true for the simple cubic and face centered cubic W–S cells. This is also true for the
centered cubic W–S cell excluding the hexagonal faces.

3. Numerical methods

3.1. Brillouin zone integrations

Brillouin zone integrations are involved in many solid state physics calculation
for instance, in the particle density (13). Analytic expressions for the integrand are u
unknown (except for a few academic cases), therefore one has to rely on numerical s
based on discrete summations. Since the computation of energy bands is usually th
time consuming part of solid state calculations, several techniques have been dev
in order to compute these integrals with the smallest number of terms. One of the
successful methods, which was pioneered by Baldereshi [16] and subsequently im
by Chadi–Cohen [17], is based on a weighted sum over a set of special symmetry

The main idea relies on the fact that a functionf {k} which has the full symmetry of the
reciprocal lattice, can be expanded over symmetrized plane waves (in the following we
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shall consider only cubic structures, for which there is no glide plane or screw sym
axis [32])

f {k} =
∑

s

f̃s
1

|P |
∑
P

eiPTs ·k, (15)

whereP is any rotation of the lattice and|P | their number (lattice vectors are ordered
|Ts1| � |Ts2| whenevers1 > s2). The integral of this function over the first Brillouin zon
is rewritten as a sum over a set of unequivalent pointskj with weightw{kj }:

f̃0 = 1

VBZ

∫
BZ

f {k}d3k =
N∑

j=1

w{kj }f {kj } + RN, (16)

N∑
j=1

w{kj } = 1, (17)

where the residualRN is given by

RN = −
∑
s>0

f̃s

N∑
j=1

w{kj } 1

|P |
∑
P

eiPTs ·kj . (18)

By choosing the pointskj such that all plane waves are exactely zero for alls up to
some largestsmax, the residual will contain only terms with lattice vectors|T| � |Tsmax|
for which the contribution will be vanishingly small provided the functionf {k} is suffi-
ciently smooth. Eventually the integral is approximated by

1

VBZ

∫
BZ

f {k}d3k �
N∑

j=1

w{kj }f {kj }. (19)

The determination of these special pointskj and their associated weightsw{kj } was rather
complicated in the first scheme involving a recursion process. Several authors have
vided formulae (see [18] and references therein).

The convergence of the discrete sum with respect to the number of special po
exponential for smooth integrands and an error of less than one per cent can be a
within a few points only. Unfortunately the presence of a sharp Fermi surface (especi
any metallic solid) introduces discontinuities in the integrands, such as in Eq. (13), wh
spoil the convergence. This method is thereby most satisfactory for insulating materia
semiconductors. Nevertheless, accurate results can still be obtained with a small nu
special points by “smearing” the Fermi surface [19]. Since the volume of the first Bril
zone and of the Wigner–Seitz cell are related by

VBZ = (2π)3

Vcell
, (20)

the number of special points for a given precision is smaller for larger cells. We have
the special point method by calculating the integral

1
∫

VBZ
BZ

k2 d3k, (21)
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Fig. 4. Relative error in the computation of integrals (21) with respect to the number of points.

Fig. 5. Density as a function of the Fermi energy for the“empty” lattice model (body centered cubic lattice, latti
parameter= 30 fm), with one single special point and with different smearing parameters (N is the number of
approximants andW is the smearing width, see Ref. [19] for the details).

which is equal to 1/4, 3/8, 19/32 in units of(2π/a)2 for simple cubic, body centere
cubic and face centered cubic lattice, respectively. The convergence is illustrated on
We have also shown on Fig. 5 how the smearing procedure of Methfessel et al. [19]
improve the convergence in the extreme case of one single special point, by com
the total neutron densitynn as a function of the Fermi energyµ defined in Eq. (9) in the
Shockley “empty” lattice test [20] for which we have(√ )
nn = 1

3π2

2mµ

h̄

3

. (22)
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3.2. Fermi energy

The determination of the Fermi energy is numerically expensive as it requires the
lation of all occupied single particle states (unlike the effective mass which depend
on the highest occupied states on the Fermi surface). The computational cost is significant
since the number of levels is of the order of several hundreds up to nearly one tho
Nonetheless a useful estimate of the Fermi energy with an accuracy of a few perce
still be easily obtained as follows. First, among all occupied states, one should distinguis
between core states whose wavefunction is localised in the neighborhood of nuc
valence or conduction states whose wavefunction extends over all space. The cor
are easily obtained by finding the bound states of one isolated nucleus. Having fou
number of such states, let us sayNcore, Eq. (9) can be written as

nn = g

(2π)3
VBZNcore+ g

(2π)3

∑
α

∫
BZ

d3k ϑ
{
µ − Eα{k}}ϑ{

Eα{k} − Ecore
}
, (23)

whereEcore is the energy of the highest core state. The determination of the Fermi ene
essentially a state counting procedure which becomes less and less sensitive to the
structure of the energy spectrum as the number of particles is increased. Conse
assuming that the valence states can be roughly described as non-interacting partic
previous equation thus leads to the following estimate:

µ � Ecore+ h̄2

2m

(
(nn − ncore)

6π2

g

)2/3

, (24)

where from (20) we havencore= gNcore/Vcell.
For instance, for the baryon densitynb = 0.03 fm−3, we found for the core states: thr

s states, twop states, twod states, onef state and oneg state. The total number o
core states is thus equal toNcore = 35 and the Fermi energy is approximately given
µ � 18.02 MeV, which is about 5% larger than the valueµ = 17.16 MeV, obtained by
direct integrations of (9) via special points. The value of the Fermi energy was also
to be completely unsensitive to the lattice structure, which is due to the fact that E
does not explicitely depend on the precise values of energy bands but only on their n
in a given energy range.

3.3. Fermi surface integrations

Calculations of the effective mass (10) require a fine mesh sampling of the Ferm
face. One of the most accurate methods for performing Fermi surface integrations is bas
on the Gilat–Raubenheimer (GR) scheme [21]. The integration over the Fermi sur
first reduced by symmetry to the irreducible wedge of the first Brillouin zone whic
partitioned into microcells. The integral is thereby discretized as a sum over the micr
with suitable weight factors to account for the fact that microcells may overfill each w
The Fermi surface is then approximated by a plane inside the microcells which it intersec
so that the integration within each cellcan be calculated analytically [22].
We have implemented the original linear extrapolation method with cubic cells [23].
The energy is linearly extrapolated from the values of the energy and velocity at the center
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of the cell. This scheme therefore requires the energy bands as well as their gra
whose evaluation with plane waves is straightforward via the Hellmann–Feynman th
[24], namely

v = h̄k
m

+
∑

K

h̄K
m

∣∣ϕ̃k(K)
∣∣2, (25)

with the normalisation of the wavefunction given by∑
K

∣∣ϕ̃k(K)
∣∣2 = 1. (26)

The GR method seems to be not so popular as the tetrahedron method in solid state
in which the irreducible domain is divided into tetrahedra and the energy is linearly
polated from its values at the four corners of each tetrahedron [25,26]. One of the ma
reasons is that the calculation of the velocity may be computationally expensive with
elaborate basis functions than plane waves. Nevertheless the linear extrapolation of t
energy within the GR method, which is a first order Taylor expansion around the cel
ter, is a better approximation than an interpolation. Since in the present case the int
in Eq. (11) involves the energy gradient, the GR method seems much more appro
Besides interpolation faces the band crossingproblem: the ordering of the energy ban
with increasing energy ensures that the energy is continuous for a given band bu
not prevent discontinuities in the energy gradient from occuring. Unlike extrapolatio
terpolation will yield an incorrectly small gradient resulting in a loss of convergence
[27–29] for a discussion about systematic errors).

In order to test this scheme, we have employed the “cubium” toy model, i.e., a s
cubic crystal with one singles band whose momentum dispersion in Cartesian coordin
is given byE{k} = −(coskx + cosky + coskz). Analytic expressions for the density
single particle states at energyE , defined by

N {E} = dn

dE = g

(2π)3h̄

∮
dSE
v

(27)

are available in terms of the elliptic integral of the first kind [30]. As can be seen on F
(g = 2) the GR method yields results in very good agreement with the analytic expres
in particular in the vicinity of the critical points associated withv = 0 (producing the
“kinks” in the density of states).

4. Results

We have considered the three types of cubic lattices, namely simple cubic, face ce
tered cubic and body centered cubic for spherical nuclei and bubbles (i.e., periodic lattice
of “holes” containing dripped neutrons in uniform nuclear matter). The Fermi surface
grations have been carried out with of the order of∼ 103 cubic cells, for which the relativ
deviation was a few percents as shown on Figs. 7 and 8.
The effective massm� shown on Fig. 10 has been found to be greatly enhanced due to
Bragg scattering, reachingm� ∼ 15m at a total baryon densitynb = 0.03 fm−3. Deeper
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Fig. 6. Density of states of the cubium model computed with the GR method and compared with the analy
expressions given by Morita et al. [30].
Fig. 7. Convergence of the effective neutron massm�/m with respect to the number of GR cells, for baryon
densitynb = 0.055 fm−3 with nuclei in a body centered cubic lattice.
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Fig. 8. Convergence of the Fermi surface areaS/Sgaswith respect to the number of GR cells, for baryon dens

nb = 0.055 fm−3 with nuclei in a body centered cubic lattice.

inside the crust, the renormalization is smaller, tending tom� ∼ m at very high density a
the single particle potential tends to a constant. We have also shown on Fig. 11 the
verse effective neutron mass in the “exotic” phases [1] including the “antispaghetti”
where non-spherical nuclei occur (only the velocity components respectively perpe
lar to the slabs or to the rods, for the “lasagna” or “(anti)spaghetti” phases are inclu
Eq. (11) for the mobility scalar; the other velocity components have the same expressio
as those of a non-interacting gas and therefore the corresponding effective mass c
with the ordinary mass). The dependence on the lattice structure is rather weak. N
cal results are summarized in Appendix A. We have also carried out the calculations w
the estimate of the Fermi energy suggested in Section 3.2. While this is usually a
approximation for bulk quantities such as theconduction neutron density, the errors a
much larger for quantities depending only on states at the Fermi level. In particular, t
sulting effective mass is about 20% lower at baryon densitynb = 0.03 fm−3, having value
m�/m � 14, where the relative error in the conduction neutron density is less tha
percent.

In order to understand the origin of this effective mass enhancement, we have com
the Fermi surface areaSF with its expression obtained from the assumption that the drip
neutrons form an ideal Fermi gas of densityn, which is given by

Sgas= 4πg
(
6π2n/g

)2/3
. (28)

We have found that the Fermi surface area is strongly reduced in the outer layers co
to that of the sphere, whereas it tends to its uniform expression (28) near the crus
interface as illustrated on Fig. 9. It is first to be remarked that the “enclosed” Fermi vo
depends only on the density, as is easily seenon Eq. (9) and therefore does not depe

on the particular shape of the Fermi surface. It is well known that among all theclosed
surfaces of a given volume, the sphere has the minimum surface area. In the present case,
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Fig. 9. Neutron Fermi surface areaSF/Sgasfor configurations with sphericalnuclei (filled symbols) and bubble
(unfilled symbols) in cubic lattices.

Fig. 10. Effective neutron massm�/m for configurations with spherical nuclei (filled symbols) and bubbles (un
filled symbols) in cubic lattices.

however, the opening of numerous band gaps in the single particle energy spectrum
to a Fermi surface composed ofdisjoint openpieces. By band gaps, we mean avoid
crossings of energy band sheets ink space. This is the reason why the Fermi surface

is found to be smaller than that of the sphere in the low density layers of the crust where
the gaps take their largest values.
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Fig. 11. Transverse effective neutron massm⊥
� /m for “exotic” configurations.

It is quite instructive to evaluate the mean Fermi velocityv̄F defined by

v̄F = 1

SF

∮
F

v dSF. (29)

It is readily seen that it is expressible, in terms of the Fermi surface areaSgas and Fermi
velocityvgasof the non-interacting neutron gas, as

v̄F

vgas
= Sgas

SF

m

m�

. (30)

For instance, at the lowest density we considered, namelynb = 0.03 fm−3, the mean Ferm
velocity is about one third the Fermi velocity of the gas. The ratio increases to on
at nb = 0.055 fm−3 and tends to one as the density approaches the crust–core tran
density. This is a clear and intuitive manifestation of Bragg scattering.

The spin–orbit coupling, as we have seen, is very small compared to the centr
tential in the bottom layers we have considered (see Fig. 1). However, such a term
probably not be negligible in the lower density regions of neutron star crust. The pre
of this term in the Schrödinger equation (1) preserves the lattice symmetry which im
that single particles wave functions can still be expressed as Bloch states. Howev
spin–orbit coupling breaks the spin symmetry and therefore raise some degenerac
result, this will open new gaps in the energy spectrum, in the vicinity of which the g
velocity will be vanishingly small. Consequently, it can be seen from (11) and (10) th
resulting effective masses would be expectedto be increased by the spin–orbit coupli
since the density would not be much affected. This conclusion is confirmed by a num
calculation in the “spaghetti” phase. The computations are quite involved since th

of the secular (complex) matrices is doubled. We have taken into account the spin–orbit
coupling given by Oyamatsu and Yamada (Eq. (2.12) of Ref. [8]), which is given in the
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Fig. 12. First Brillouin zone and irreducible domain of an hexagonal lattice with the conventional labeling of hig
symmetry points and lines.

W–S approximate cell (a cylinder in this case directed along thez axis) by an expressio
of the form

VLS{r} = 1

r

(
λ1

dnb

dr
− λ2

d

dr
(nn − np)

)
1

2
lzσz, (31)

wherer is the distance to the cylinder axis,lz the angular momentum component alo
the cylinder axis andσz the diagonal Pauli spin matrix. The parametersλ1 andλ2 were
adjusted so as to give the correct sequence of single particles states of208Pb. We have use
the values of model I from Ref. [8] namelyλ1 = 175.8 MeVfm5 andλ2 = 16.39 MeVfm5.
We have carried out the calculation at the total baryon densitynb = 0.06 fm−3 for the
hexagonal lattice. Since the densities varies smoothly, the spin–orbit coupling has a sm
effect, yet the opening of band gaps can be clearly observed as shown on Fig. 13 (s
Fig. 14). The transverse effective mass is found to be slightly larger with than wi
spin–orbit coupling as expected, respectively,m⊥

� /m = 1.37 andm⊥
� /m = 1.35 while the

Fermi surface area is smaller, respectively,SF/Sgas= 0.88 compared toSF/Sgas= 0.89.

5. Conclusion

We have considered the band effects in neutron star crust induced by Bragg s
ing of dripped neutrons upon the solid lattice of nuclei. This is the analog in a nucle
context, of a well-known phenomenon in ordinary solid state physics whereby valen
electrons are being scattered by ions leading notably to an understanding of se
ductor band gaps. Based on a mean field model with Bloch type boundary cond
we have computed the effective dripped neutron macroscopic massm� necessary fo
evaluating the entrainment coefficients in hydrodynamical descriptions of neutron
[1,2]. We found that this effective mass is increased by several hundred percents
pared to the ordinary neutron mass in the middle layers of the inner crust but be

negligible near the crust–core boundary where nuclei merge into a uniform mixture
of neutrons, electrons and protons (and perhaps of some other mesons). We have also



n

learly

g-
were
e nu-

ation,
on star
mass
N. Chamel / Nuclear Physics A 747 (2005) 109–128 125

Fig. 13. Neutron band structure, with (thin lines) and without (thick lines) along high symmetry directions show
on Fig. 12 for an hexagonal lattice of spaghetti (rod) like nuclei at baryon densitynb = 0.055 fm−3.

Fig. 14. Zoom of the region in the box of Fig. 13. Band splittings induced by spin–orbit coupling can be c
seen.

found that the lattice structure plays a minorrole. However, the differences are si
nificant between 3D crystals and the 1D or 2D liquid crystal configurations that
previously studied within the same model (respectively, slab shaped and rod lik
clei).

The present results also suggest that the widely used Wigner–Seitz approxim
whereby Bragg scattering is neglected, may be questionable for the study of neutr
crust. In particular, it is to be remarked that the very large values of the effective

m� that we found in the middle layers tend to indicate that dripped neutron shell (actu-
ally band) effects may have significant consequences for the neutron star crust equilibrium
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structure compared to thatobtained in the W–S approximation. It has been recently show
that the composition of the inner crust of neutron star is quite sensitive to the p
shell effects [33]. The unbound neutron shell effects have been investigated by M
ski and Heenen [6] who suggested that such quantum effects play an important role
determination of the neutron star crust equilibrium structure since the energy diffe
between different nuclear shapes, lattice structures and compositions is typically
Their analysis was based on a semiclassical approach. They have recently carried
Skyrme–Hartree–Fock calculations [34] but with ordinary periodic boundary conditions
The implementation of Bloch type boundary conditions within more realistic models, e
pecially taking into account neutron pairing as outlined recently [9], should therefore
further investigated.
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Appendix A. Numerical results

Effective dripped neutron massm� for spherical nuclei and bubbles in a body cente
cubic lattice:

nb (fm−3) nn (fm−3) n/nn m�/m

0.03 0.029 0.94 15.4
0.055 0.053 0.95 5.5

0.0855 0.0826 0.98 1.07

Transverse effective dripped neutron massfor “pasta” phases: “spaghettis” (hexagon
lattice), “lasagna” and cylinder holes (hexagonal lattice):

nb (fm−3) nn (fm−3) n/nn m⊥
� /m

0.06 0.0581 0.9553 1.347
0.065 0.063 0.9578 1.242
0.07 0.0678 0.9606 1.174
0.074 0.0716 0.9633 1.124

0.076 0.0735 0.9634 1.031
0.0775 0.0749 0.9646 1.029
0.08 0.0773 0.9666 1.025
0.082 0.0792 0.9687 1.020

0.083 0.0802 0.9734 1.010
0.084 0.0811 0.9746 1.003

0.085 0.0821 0.9762 1.001
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