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ABSTRACT

Both relativistic and non-relativistic two-fluid models of neutron star cores are constructed,
using the constrained variational formalism developed by Brandon Carter and co-workers. We
consider a mixture of superfluid neutrons and superconducting protons at zero temperature,
taking into account mutual entrainment effects. Leptons, which affect the interior composition
of the neutron star and contribute to the pressure, are also included. We provide the analytic
expression of the Lagrangian density of the system, the so-called master function, from which
the dynamical equations can be obtained. All the microscopic parameters of the models are
calculated consistently using the non-relativistic nuclear energy density functional theory.
For comparison, we have also considered relativistic mean field models. The correspondence
between relativistic and non-relativistic hydrodynamical models is discussed in the framework
of the recently developed 4D covariant formalism of Newtonian multifluid hydrodynamics.
We have shown that entrainment effects can be interpreted in terms of dynamical effective
masses that are larger in the relativistic case than in the Newtonian case. With the nuclear
models considered in this work, we have found that the neutron relativistic effective mass is
even greater than the bare neutron mass in the liquid core of neutron stars.
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1 IN T RO D U C T I O N

The recent discovery of quasi-periodic oscillations (QPOs) in the
X-ray flux of giant flares from soft-gamma repeaters (SGR) may
well be the first direct observational evidence of neutron star os-
cillations. QPOs have been detected during the 2004 December 27
giant flare from SGR 1806−20 (Israel et al. 2005; Strohmayer &
Watts 2006; Watts & Strohmayer 2006), during the 1998 August
27 giant flare from SGR 1900+14 (Strohmayer & Watts 2005)
and during the 1979 March 5 event in SGR 0526−66 (Barat et al.
1983). Those QPOs are usually interpreted as global seismic vi-
brations triggered by magnetic crust quakes (for a recent review of
these so-called magnetars, see e.g. Woods & Thompson 2006 and
references therein). If this interpretation is confirmed, the analysis
of those QPOs can potentially reveal the interior composition of
neutron stars, thus putting constraints on the theory of dense mat-
ter (Samuelsson & Andersson 2007). Apart from QPOs in SGR,
the rapid development of the gravitational wave astronomy opens
very exciting perspectives of directly observing neutron star oscil-
lations in a near future (Andersson & Kokkotas 2005). In particular,
accreting neutron stars in Low-Mass X-ray Binaries are expected
to be detectable by the Advanced Laser Interferometer Gravita-
tional Wave Observatory (LIGO) detector1 which is planned to be

�E-mail: nchamel@ulb.ac.be
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operational in a few years (see e.g. the recent analysis of Watts
et al. 2008). However, the interpretation of these observations re-
quires not only a detailed theoretical understanding of the dynamics
of neutron stars, but also a consistent description of the different
layers.

A neutron star is mainly composed of three distinct regions: an
outer crust, an inner crust characterized by the presence of a neutron
ocean and a liquid core which might be solid in the deepest regions
(Haensel, Potekhin & Yakovlev 2006). Microscopic calculations of
dense nuclear matter suggest that the matter inside neutron stars is
superfluid (Dean & Hjorth-Jensen 2003). This theoretical prediction
is strongly supported by the observations of pulsar glitches (Baym,
Pethick & Pines 1969; Anderson & Itoh 1975). Other indications
in favour of superfluidity, while less convincing, are provided by
observations of neutron star thermal X-ray emission (Yakovlev &
Pethick 2004). One of the remarkable consequences of superfluidity
is the possibility of having several dynamically distinct components.
The electrically charged particles inside neutron stars are locked to-
gether by the interior magnetic field and co-rotate on very long
time-scales of the order of the age of the star (Easson 1979). The
charged particles are rotating at the observed angular velocity of the
star due to the coupling with the radiating magnetosphere and thus
follow the long-term spinning-down of the star caused by the elec-
tromagnetic radiation. In contrast, the neutrons being electrically
uncharged and superfluid can rotate at a different rate. This natu-
rally leads to considering the interior of a neutron star as a two-fluid
mixture. As a result of the strong interactions between neutrons

C© 2008 The Author. Journal compilation C© 2008 RAS



738 N. Chamel

and protons, the two fluids are not completely independent but
are coupled via mutual entrainment effects. These non-dissipative
effects are known to significantly affect the frequencies of super-
fluid oscillation modes for which the superfluid neutrons and the
charged particles are counter moving (Andersson & Comer 2001).
Two-fluid models of superfluid neutron star cores including entrain-
ment effects have been proposed by Comer & Joynt (2003). Carter,
Chamel & Haensel (2005, 2006b) (see also Chamel & Carter 2006)
have shown how to describe in a unified way both the liquid core
and the inner crust within this two-fluid picture. The description of
the outer crust requires a different treatment (Carter, Chachoua &
Chamel 2006a). Eventually, the different layers have to be matched
with appropriate boundary conditions at the interfaces (Andersson,
Comer & Langlois 2002; Lin, Andersson & Comer 2007).

In this work, we have constructed relativistic hydrodynamical
models of cold superfluid neutron star cores, calculating all the
necessary microscopic coefficients with the same underlying mi-
croscopic model. The present work differs from that of Comer &
Joynt (2003) by improving the microphysics description of dense
nuclear matter and by making the link between non-relativistic and
relativistic models. In the first section, we briefly review the con-
vective variational formalism of multifluid systems. This approach
is employed to construct a two-fluid model of neutron star core in
the Newtonian framework in Section 3. It is then shown in Section 4
how to generalize this model to relativistic fluids. In Section 5, we
discuss the effects of entrainment in terms of dynamical effective
masses. The consequences of superfluidity at the hydrodynamical
scale are discussed in Section 6. Section 7 is devoted to the condi-
tions of ‘chemical’ equilibrium and to the composition of neutron
star cores. In Section 8, the microscopic parameters of the two-fluid
model are evaluated, using Skyrme effective nucleon–nucleon in-
teractions. As an example, numerical results are shown in Section 9
for three particular Skyrme forces: the popular SLy4 force and the
parameter sets LNS and NRAPR which were entirely constructed
from realistic quantum many-body calculations. In Section 10, re-
sults are compared to those obtained by the relativistic mean field
theory applied by Comer & Joynt (2003). We have constructed new
relativistic mean field models that yield a much better agreement
with nuclear data than those considered by Comer & Joynt (2003).

2 VARIATIONA L FORMALISM O F

M U LT I F L U I D H Y D RO DY NA M I C S

In the following, we will use Greek letters for the space–time indices
μ, ν, . . . and Latin letters i, j, . . . for space indices. We introduce
capital Latin letters X, Y for distinguishing the various constituents
and among them we will adopt the symbols � for leptons and q for
nucleons (when several indices of the same species will be needed,
we will add primes on the label as e.g. q, q′′, q′, etc.). We will
apply the Einstein summation convention (i.e. repeated indices are
summed) for space–time indices but not for the constituent labels.

Let us consider an arbitrary number of fluids that are interacting
with each other. We follow the variational formalism developed by
Carter (1989), which has been recently reviewed by Gourgoulhon
(2006) and Andersson & Comer (2007). In this approach, the basic
fluid variables are the particle four-currents nμ

X
of each fluid. The

equation governing the dynamical evolution of each fluid is obtained
from an action principle by considering variations of the fluid par-
ticle trajectories. Given a so-called master function �, which is the
Lagrangian density of the system, and a set of four-force densities
f X

ν acting on each fluid, the hydrodynamic equations take the very

simple form

nμ

X
� X

μν + πX
ν ∇μnμ

X
= f X

ν , (1)

where the vorticity two-form � X
μν is defined as the exterior derivative

of the four-momentum covector

πX
μ = ∂�

∂nμ
X

, (2)

namely

� X
μν = 2∇[μπX

ν] = ∇μπX
ν − ∇νπX

μ. (3)

It is understood that the partial derivative in equation (2) is taken
with all other four-currents being kept constant. For a strict applica-
tion of the variational principle, the forces should separately vanish
f X

ν = 0, which entails by contracting equation (1) with the corre-
sponding four-current nν

X
, that ∇μnμ

X
= 0. In this case, equation (1)

therefore reduces to

nμ

X
� X

μν = 0. (4)

Note that despite the vanishing of the individual forces f X
ν , the

fluids are not independent of each other in general and the set of
equation (4) is therefore not simply Euler equations. The couplings
between the various fluids are hindered in the momenta πX

μ.
The stress-energy tensor of the fluids can be expressed as

T μ
ν = � δμ

ν +
∑

X

nμ

X
πX

ν , (5)

where � can be interpreted as a generalized pressure and is defined
by

� = � −
∑

X

nμ

X
πX

μ. (6)

Let us emphasize that so far we have made no assumption with
respect to the space–time geometry so that the above covariant
expressions, based only on the exterior calculus, are valid both in
(special and general) relativity and in the Newtonian limit. In the
following sections, we will show how to construct the Lagrangian
density � in each case.

3 N ON-RELATI VI STI C TWO-FLUI D MODELS

O F N E U T RO N STA R C O R E

We consider a uniform mixture with four constituents: neutrons,
protons, electrons and possibly muons. Such a composition is ex-
pected to be found in the interior of low-mass neutron stars and in
the outer core of massive neutron stars at densities above the crust-
core transition density ρcc ∼ ρ0/2 and below �2–3ρ0, where ρ0 �
2.8 × 1014 g cm−3 is the saturation density of infinite symmetric nu-
clear matter. Given the current uncertainties on the composition of
neutron star core (for a recent review see e.g. Haensel et al. 2006), it
is sometimes assumed for simplicity that this composition remains
the same at higher densities.

At densities below ∼3ρ0, the nucleons are essentially non-
relativistic. For instance, the sound velocity for the realistic model
A18 + δv + UIX∗ of Akmal, Pandharipande & Ravenhall (1998)
becomes comparable to the speed of light at densities around
∼5ρ0. For this model, such densities are reached in very massive
neutron stars with a mass larger than 2 M�. However, the most
precisely measured neutron star masses (in neutron star binaries)
lie below 1.5 M� (Lattimer & Prakash 2007). Besides, as shown
by Glendenning (2000) (chapter 3, section 4), the effects of Gen-
eral relativity are negligible at the microscopic scale. Moreover, at
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the macrocoscopic scale, the fluid velocities are small compared to
the speed of light. Indeed, the velocity at the equator of the most
rapidly spinning neutron stars is only about ∼20 per cent of the
speed of light (taking 1 ms for the period and 10 km for the radius).
For the purpose of matching the microscopic nuclear model to the
macroscopic hydrodynamical model, it will therefore be convenient
to start with a local analysis considering non-relativistic fluids in
the Newtonian framework. Such non-relativistic models can also be
very useful by themselves for studying qualitatively the dynamics
of superfluid mixtures in neutron stars (Andersson & Comer 2001).
In order to facilitate the correspondence between relativistic and
non-relativistic models, we will use the fully 4D covariant formal-
ism developed by Carter & Chamel (2004, 2005a,b). We will then
show how to construct fully relativistic fluid models in Section 4 (as
required for a General relativistic description of the star). For sim-
plicity, we only consider the possible presence of the magnetic field
by supposing that leptons and protons are comoving, as discussed
in Section 1. We therefore consider only two independent fluids:
the neutron superfluid and the fluid of charged particles (protons,
electrons and possibly muons). This two-fluid model includes the
limit of non-superfluid neutron star cores since in this case all the
particles are essentially comoving and can thus be treated as a single
fluid (Baym et al. 1969). Including the magnetic field is in principle
straightforward. It has been recently shown that under some cir-
cumstances the magnetic field can even be variationally taken into
account in the purely Newtonian context despite the non-Galilean
invariance of Maxwell’s equations (Carter et al. 2006a). However,
taking into account the magnetic field as a dynamical field implies
a better understanding of the lepton dynamics as well as the proton
superconductivity which is beyond the scope of the present model.

Let us now briefly review the 4D geometric structure of the New-
tonian space–time (see Carter & Chamel 2004 for a detailed discus-
sion). Newtonian theory postulates the existence of a universal time
t, leading to a foliation of the space–time into 3D hypersurfaces.
Each of these spatial sections are flat and are endowed with the 3D
Euclidean metric, giving rise to the symmetric contravariant tensors
ημν and ημν by pushforward and by pull-back, respectively. These
tensors are not metric tensors since they are degenerate

ημνtν = 0, ημνe
ν = 0 (7)

where tν = ∂ν t and the ‘ether’ flow vector eμ, normalized by the
condition

eμtμ = 1, (8)

characterizes a particular Aristotelian frame corresponding to the
usual kind of 3+1 space–time decomposition. The particle four-
currents introduced in Section 2 are given by nμ

X
= nXuμ

X
, where

nX are the corresponding particle number densities, and the four-
velocities uμ

X
are defined by

uμ

X
= v μ

X
+ eμ, tμv μ

X
= 0, (9)

with v μ

X
being the corresponding push forward of the usual three-

velocities in the given Aristotelian frame. It is easily seen from
equation (8) that the four-velocities are normalized as

tμuμ

X
= 1. (10)

We will neglect the small mass difference between neutrons and
protons and write simply m for the nucleon mass, which we take
to be equal to the atomic mass unit. For consistency, we thus take
the electron mass me = 0. We also neglect the muon mass except
at the microscopic scale for calculating the internal energy density.

In the limit of small currents, the Lagrangian density � can be
decomposed into a dynamical part �dyn, which depends on the
particle currents nμ

X
, and a static part �ins which depends only on

the particle densities given by

nX = nμ

X
tμ. (11)

The dynamical Lagrangian density (neglecting the contribution of
the leptons) can be written as a quadratic form of the nucleon
currents

�dyn = 1

2

∑
q,q ′

ημν Kqq ′
nμ

q nν
q ′ . (12)

The coefficients of the symmetric mobility matrixKqq ′
(q, q ′ = n, p

for neutrons, protons, respectively) are functions of the nucleon
densities and will be evaluated in Section 8. Due to the Galilean
invariance, the matrix elements are related to each other by∑

q ′
nq ′Kqq ′ = m. (13)

Taking the partial derivative of the above equation with respect to
the nucleon density leads to the following identity:∑
q ′,q ′′

nq ′
∂Kq ′q ′′

∂nq

nq ′′ = −m. (14)

Since the left-hand side of equation (14) has to be negative for any
neutron and proton densities, we obtain the following inequalities

∂Kqq

∂nq ′
< 0,

(
∂Knp

∂nq

)2

<
∂Knn

∂nq

∂Kpp

∂nq

. (15)

The non-diagonal coefficient Knp = Kpn accounts for the non-
dissipative entrainment effects and arises from the strong interac-
tions between nucleons. If the nucleons could be treated as ideal
Fermi gases, this coefficient would simply vanish Knp = 0.

The static contribution �ins is related to the static internal (non-
gravitational) energy density Uins by

�ins = −Uins − Upot, (16)

where ρ is the total baryon mass density

ρ = mnb (17)

and Upot = ρφ is the gravitational potential energy density, φ being
the gravitational scalar potential. As discussed previously, nucleons
are not relativistic either at the microscopic scale or at the macro-
scopic scale. Nevertheless, in order to prepare the generalization to
relativistic fluids in the next section, the nucleon rest-mass energy
density is included in Uins. It can be shown that in the Newtonian
framework this extra term has no effect on the variational principle
(thereby on the dynamical equations of the fluids) provided the to-
tal mass current is conserved (Carter et al. 2006a). Let us point out
that the total internal (non-gravitational) energy density Uint is not
simply given by Uins, but contains an additional entrainment term
defined by Uent = Udyn − Ukin, where Udyn = �dyn and

Ukin = 1

2

∑
q

ημν

m

nq

nμ
q nν

q (18)

is the total kinetic energy density. We thus have Uint = Uins + Uent.
In summary, the non-relativistic Lagrangian density of the fluids

is therefore given by

� = �dyn + �ins, (19)

where �dyn and �ins are given by equations (12) and (16), respec-
tively. The dynamical equations of the gravitational field can be
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obtained from the variational principle by simply adding the con-
tribution

�grf = − 1

8πG
ημν(∇μφ)(∇νφ), (20)

where G is the gravitational constant. Considering variations of the
total Lagrangian density �tot = � + �grf with respect to φ leads to
the usual Poisson’s equation

ημν∇μ∇νφ = 4πGρ. (21)

Given the above Lagrangian density (19), the momentum of each
constituent is obtained from equation (2). The nucleon momentum
is given by

πq
μ =

∑
q ′

ημν Kqq ′
nν

q ′

+ tμ

⎛⎝ 1

2

∑
q ′,q ′′

ηρν

∂Kq ′q ′′

∂nq

n
ρ

q ′n
ν
q ′′ − μq − mφ

⎞⎠ , (22)

where μX is the chemical potential defined by

μX = ∂Uins

∂nX

. (23)

Since the Lagrangian density depends only on the lepton densities
n� = nμ

� tμ(� = e, μ for electrons, muons, respectively), the momenta
of the leptons are time-like and are given by

π�
μ = −tμμ�. (24)

If the particles are all comoving with the four-velocity uμ, the nu-
cleon four-momenta take the familiar expression

πq
μ = mημνu

ν − tμ

(
1

2
mv2 + μq + mφ

)
, (25)

where v2 = ημνuνuμ, using the identities (13) and (14).
The usual three-momentum covector, denoted by 
X

μ, is defined
by the Aristotelian spatial components of the four-momentum co-
vector πX

μ,


X
μ = ην

μπX
ν , (26)

where ημ
ν is the space projection tensor defined by

ημ
ν = δμ

ν − eμtν, (27)

using the Kronecker unit tensor δμ
ν . It follows immediately from

equation (8) that eμ
X
μ = 0. It is readily seen that the lepton three-

momentum vanishes 
�
μ = 0, while the nucleon three-momentum

is determined solely by the mobility matrix Kqq ′


q
ν =

∑
q ′

ηνμ Kqq ′
n

μ

q ′ . (28)

From the nucleon and lepton momenta equations (22) and (24),
respectively, we can obtain the generalized pressure � of the fluids
according to equation (6). The kinetic part of the Lagrangian density
�kin = Ukin does not contribute to the pressure � which can thus
be written as

� = �int −
∑

X

nμ

X

∂�int

∂nμ
X

, (29)

where �int = � − �kin. Due to entrainment effects, this internal
Lagrangian density �int of the fluids is not simply equal to the
opposite of the total internal energy density (including gravitational
contribution) Uint + Upot but is given by

�int = −Uint − Upot + 2Uent. (30)

The gravitational potential energy density does not contribute to the
pressure. As a result, the generalized pressure � is the sum of a
static term � ins given by

�ins =
∑

X

nX

∂Uins

∂nX

− Uins, (31)

and a dynamical term is given by

�ent = −
∑

X

nμ

X

∂Uent

∂nμ
X

+ Uent. (32)

In the single fluid case, the static pressure � ins reduces to the ordi-
nary pressure usually denoted by P. Note that in multifluid systems,
if the static internal energy density is of the form

Uins =
∑

X

UX{nX}, (33)

the static pressure can then be written as the sum of the partial
pressures PX

P =
∑

X

PX (34)

with

PX =
∑

X

nX

∂UX

∂nX

− UX . (35)

In the general case, however, such a decomposition is not possible.
The additional pressure term �ent vanishes whenever either the two
fluids are comoving or the fluids are non-interacting so that the non-
diagonal coefficients of the mobility matrix vanish (no entrainment).

Going back to the two-fluid model of neutron star cores, the
static and entrainment contributions to the general pressure are
given explicitly by

�ins = nn
∂Uins

∂nn
+ np

∂Uins

∂np

+ ne

∂Uins

∂ne

+ nμ

∂Uins

∂nμ

− Uins (36)

and

�ent = 1

2
ημν

(
vμ

p − vμ
n

) (
vν

p − vν
n

)
×

[
n2

n

∂mn
�

∂nn
+ n2

p

∂mp
�

∂np

+ 1

2
nn(mn

� − m) + 1

2
np(mp

� − m)

]
,

(37)

respectively. Given the general pressure � = �ent + � ins and the
four-momenta πX

μ of the various constituents, the stress-energy ten-
sor of the fluids can easily be obtained from equation (5).

4 FRO M N ON-RELATIVISTIC TO

RELATI VI STI C TWO-FLUI D MODELS

In the previous section, we have taken into account of the effects of
the gravitational field on the fluids by including the term −ρφ in
the static internal Lagrangian density �ins. Alternatively, as was first
shown by Elie Cartan, the effects of gravitation can be taken into
account in the structure of the Newtonian space–time itself, thus
facilitating the comparison with General relativity (see e.g. chapter
12 of Misner, Thorne & Wheeler 1973). This can be achieved by
replacing the tensor ημν in equation (12) for the Newton–Cartan
space–time metric γ μν defined by

γμν = ημν − 2φtμtν . (38)

It is readily verified, remembering equation (13), that this is indeed
completely equivalent to adding the term −ρφ to the Lagrangian
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density �. However, using this approach, it becomes clear how to
make the correspondence with General relativity (thereby Special
relativity as well). For weak gravitational fields, the Riemannian
metric gμν of the relativistic space–time can be locally approximated
by

gμν � ημν − (c2 + 2φ)tμtν = γμν − c2tμtν . (39)

This suggests to define the ‘dynamical’ contribution to the relativis-
tic Lagrangian density as

�̃dyn = 1

2

∑
q,q ′

Kqq ′ (
gμνn

μ
q nν

q ′ + c2nqnq ′
)
, (40)

where nμ
q = nquμ

q . The particle densities nX are now defined by

nX = √−gμνnμ
X
nν

X
/c, (41)

with the four-velocities normalized as

gμνu
μ

X
uν

X
= −c2. (42)

Note that equation (41) with the normalization (42) is consistent
with equations (9) and (10) in the non-relativistic limit. Likewise,
with the definition (40), the expression (12) is indeed recovered in
the Newtonian limit.

The relativistic expression of the corresponding ‘static’ part is
readily obtained by simply substituting the particle densities of the
constituents in the Newtonian ether frame for the densities (41) in
the rest frame of the corresponding particles. Using the identity
(13) and adding the internal energy density, the total relativistic
Lagrangian density of the fluids can be expressed as

�̃ = 1

2

∑
q,q ′

Kqq ′
gμνn

μ
q nν

q ′ + 1

2
nbmc2 − Uins, (43)

where nb = nn + np is the baryon density. If the fluids are described
in General relativity, the Lagrangian (43) has to be complemented
with the Einstein–Hilbert contribution

�̃grf = c4

16πG
R, (44)

where R is the Ricci scalar associated with the metric gμν . Vari-
ations of the action with respect to the metric (which involve not
only variations of the total Lagrangian density but also variations
of the space–time measure) lead to Einstein’s equations (see e.g.
Andersson & Comer 2007).

The relativistic momenta of the nucleons can be expressed in a
form similar to equation (26) as

πq
μ =

∑
q ′

gμνK̃qq ′
nν

q ′ . (45)

The non-diagonal components of the symmetric relativistic mobility
matrix K̃qq ′

are equal to those of the non-relativistic matrix Kqq ′
,

while the diagonal elements are given by

K̃qq = Kqq − m

nq

+ μq

c2nq

− 1

c2nq

∂Knp

∂nq

(
c2nnnp + gρσ nρ

n nσ
p

)
.

(46)

The relativistic momenta of the leptons take a very simple form

π�
ν = μ�

c2
uμ

p gμν. (47)

If the constituents are all comoving with the four-velocity uμ, the
four-momenta reduce to

πX
ν = μX

c2
uμ gμν. (48)

With the momenta specified, we can obtain the generalized pres-
sure � from equation (6). As for the non-relativistic case, � can
be decomposed into an ordinary ‘static’ part given by equation (31)
and an extra contribution �ent due to entrainment which can be
expressed as

�ent = −
∑

X

nμ

X

∂Ũent

∂nμ
X

+ Ũent, (49)

where the entrainment energy density is now defined by

Ũent = 1

2

∑
q,q ′

Kqq ′
gμνn

μ
q nν

q ′ . (50)

Before concluding this section, let us remark that the relativistic
Lagrangian density can be written in the very concise form

�̃ = λ0 + λ1(x2 − np), (51)

where the coefficients λ0 and λ1 are given by

λ0 = −Uins, λ1 = −c2Knp, (52)

and adopting the following notations

x2c2 = −gμνn
μ
n nν

p, (53)

n2c2 = −gμνn
μ
n nν

n , (54)

p2c2 = −gμνn
μ
p nν

p . (55)

Equation (51) is consistent with the expansion of the Lagrangian
density in powers of (x2 − np), suggested by Andersson et al.
(2002). It can be clearly seen in equation (51) that in the absence
of entrainment (i.e. λ1 = 0) or in the case of comoving fluids, the
Lagrangian density reduces to the opposite of the internal energy
density.

5 DYNAMI CAL EFFECTI VE MASSES

5.1 Non-relativistic case

If the nucleons were not interacting with each other, the mobility
matrix introduced in Section 3 would be diagonal and we would
simply have Knn = m/nn and Kpp = m/np . Of course, we know
that nucleons are strongly interacting. This means that the matrix
Kqq ′

does not have such a simple structure. It is convenient to define
neutron and proton dynamical effective masses by

mn
� ≡ nn Knn, mp

� ≡ np Kpp, (56)

respectively. The deviations of mq
� from the bare baryon mass m

therefore arise entirely from the nucleon–nucleon interactions. Let
us point out that these effective masses depend on the nucleon
densities and therefore vary with depth inside the neutron star. As a
result of equation (13), the non-diagonal coefficients of the mobility
matrix can be expressed as

Knp = Kpn = m − mn
�

np

= m − mp
�

nn
. (57)

It can be shown with stability arguments (Chamel & Haensel 2006)
that the effective masses are bounded from below mq

� /m > nq/nb,
where nb = nn + np or equivalently

Knp = Kpn <
m

nb
. (58)

Since in neutron star core the effective masses are typically smaller
than the bare nucleon mass (therefore Knp > 0), this inequality
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provides an upper bound for the largest possible strength of en-
trainment effects between the two fluids. The physical meaning of
the dynamical effective masses defined by equation (56) becomes
clear when writing the expressions of the nucleon three-momentum
covectors (26)


n
ν = mn

�vn ν + (m − mn
� )vp ν, (59)


p
ν = mp

� vp ν + (m − mp
� )vn ν, (60)

where vX ν ≡ ηνμv μ

X
. This shows that the three-momentum and the

three-velocity of a given nucleon species are not aligned whenever
the dynamical effective masses differ from the bare nucleon mass, or
equivalently whenever the non-diagonal coefficients of the mobility
matrix do not vanish.

5.2 Relativistic case

By analogy with the definition (56), let us introduce relativistic
nucleon dynamical effective masses by

m̃q
� = nqK̃qq , (61)

where K̃qq ′
is the relativistic generalization of the non-relativistic

mobility matrix Kqq ′
. Using equation (46) together with (56), we

find

m̃q
�

m
= mq

�

m
+ μq

mc2
− 1 − 1

mc2

∂Knp

∂nq

(
c2nnnp + gρσ nρ

n nσ
p

)
, (62)

with μq the chemical potential defined by equation (23). It is easily
checked that m̃q

� → mq
� in the Newtonian limit. With these defini-

tions, the neutron and proton four-momenta can be explicitly written
as

πn
μ = [

m̃n
�u

ν
n + (m − mn

� )uν
p

]
gμν, (63)

πp
μ = [

m̃p
� uν

p + (m − mp
� )uν

n

]
gμν. (64)

Note that the entrainment contributions involve the non-relativistic
effective masses (56). Equation (62) is the generalization to inter-
acting multifluid systems of the effective mass introduced by Carter
(1989) in the perfect fluid case. Indeed, in the absence of entrain-
ment,Knp = 0 so that mq

� = m while the relativistic effective masses
are given by

m̃q
�

m
= μq

mc2
. (65)

This equation is identical to equation (1.66) in the lecture notes
of Carter (1989). The physical origin of the difference between
m̃q

� and mq
� is that in relativity all forms of energy contribute to the

mass. A remarkable consequence is that even massless particles can
have a non-vanishing relativistic effective mass. This is for instance
the case of leptons for which we have assumed m� = 0. However,
equation (47) shows that the dynamical effective lepton mass is not
zero but is given by

m̃�
� = μ�

c2
. (66)

Note that even if leptons were not interacting (which we will ac-
tually suppose in Section 8 in order to evaluate the master func-
tion �), they would still have a non-zero effective mass due to
the Pauli exclusion principle which prevents all the particles from
occupying the lowest energy state with zero momentum (the chem-
ical potential μ� is then given by the Fermi energy of the lepton
species �).

For unbound nuclear systems like the liquid core of neutron
stars, we have μq > mc2. Besides, if we assume that the strength of
entrainment effects decreases with increasing density, i.e.

∂Knp

∂nq

< 0, (67)

(this is actually the case for the models considered in this work; see
equation 109), and using the Cauchy–Schwartz inequality

−gμνn
μ
n nν

p ≤
√

−gμνn
μ
n nν

n

√
−gμνn

μ
p nν

p, (68)

it is easily shown that the relativistic effective masses are always
larger than the non-relativistic ones. With the notations introduced
at the end of Section 4, the relativistic dynamical effective masses
can be expressed solely in terms of the parameters λ0 and λ1 of the
relativistic Lagrangian density as

m̃q
� = (nb − nq )

λ1

c2
− 1

c2

∂λ0

∂nq

+ 1

c2

∂λ1

∂nq

(np − x2). (69)

Note that the first-order expansion of the relativis-
tic Lagrangian density, equation (51) in powers of
(x2 − np), leads to dynamical effective masses with a first-order
contribution proportional to (x2 − np). This velocity-dependent
term vanishes in the Newtonian limit so that the non-relativistic
effective masses are independent of the velocities to the first order.
The reason is that in relativity the particle number densities involve
all the components of the corresponding four-currents according
to equation (41) while in the Newtonian case, the densities
only depend on the time component of the four-current through
equation (11).

6 SUPERFLUI DI TY

In the previous sections, we have accounted for the superfluidity in
neutron star core by assuming that two independent fluid motions
could coexist. However, strictly speaking this assumption only re-
quires perfect fluidity, i.e. the absence of viscosity and dissipative
drag effects which damp the development of relative motions be-
tween the constituents. The distinguishing feature of a superfluid
compared to a perfect fluid is the fact that it can be described by
a macroscopic quantum wave function. This entails that in a su-
perfluid the momentum circulation is quantized according to the
Bohr–Sommerfeld quantization rule∮

πμdxμ = Nπ�, (70)

where � is the Dirac–Planck constant and N is an integer, which
simply follows from the requirement that the length of any closed
path must be an integral multiple of the de Broglie wavelength of the
condensate formed of bound neutron pairs. This condition implies
the existence of neutron quantized vortex lines in neutron stars
(Ginzburg & Kirzhnits 1965). Assuming that the neutron vortices
are arranged on a regular triangular array, the inter vortex spacing
is given by

dυ =
√

h

2
√

3m�n

� 3.4 × 10−3

√
102 s−1

�
cm, (71)

where �n is the angular velocity of the neutron superfluid, which is
approximately equal to the observed angular velocity � of the star.

In regions devoid of vortices, the neutron momentum circulation
is equal to zero which implies that the neutron momentum can be
written as

πn
μ = �

2
∇μϕn, (72)

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 388, 737–752



Superfluid models of neutron star cores 743

where the factor of 1/2 accounts for the fermionic nature of the
neutrons and ϕn is the scalar phase of the condensate. Consequently,
the corresponding vorticity two-form locally vanishes

�n
μν = 0. (73)

However, at length-scales much larger than dυ for which we are
interested here, a fluid element is threaded by many vortex lines.
Consequently, the vorticity two-form does not have to vanish at
this scale. Nevertheless, the superfluidity condition requires the
existence of an average four-velocity vector uμ

υ of the vortex lines
such that the Lie derivative of the vorticity two-form along uμ

υ

vanishes

uυL�n
μν = 0. (74)

The above condition is satisfied if

uμ
υ �n

μν = 0. (75)

Vortices are comoving with the superfluid, unless forces act on them.
Indeed, it can be seen that equation (75) with uμ

υ = uμ
n is consistent

with Euler equation (4) obtained for the case fn
ν = 0. It should

be stressed that the above conditions (73) and (75) apply for either
relativistic or non-relativistic superfluid. The presence of vortices
can be explicitly included in the variational principle as shown by
Carter (2000) and will not be further discussed here.

7 C O M P O S I T I O N O F N E U T RO N S TA R C O R E

The composition of the neutron star core is determined by the rates
of transfusion processes which convert particles of different species
into each other. While the baryon number is always conserved

∇μn
μ
b = 0, (76)

where nμ
b = nμ

n + nμ
p , neutrons may be transformed into protons

and vice versa via electroweak processes. The fastest process is the
direct Urca process

n → p+ + � + ν̄�, p+ + � → n + ν�, (77)

where � is electron or muon. When the beta equilibrium is reached,
the two reactions occur at the same rate. In degenerate dense matter,
this process is allowed for sufficiently large proton fractions owing
to the requirement that both momentum and energy have to be con-
served (Lattimer et al. 1991). When these reactions are forbidden,
the slower modified Urca process prevails

n + N → p+ + � + ν̄�, p+ + N + � → n + ν�, (78)

involving an additional spectator nucleon N (neutron or proton). The
relaxation time of these beta processes for npe matter, neglecting
nucleon superfluidity, is approximately given by τ (D) ∼ 20T−4

9 s
and τ (M) ∼ T−6

9 months for the direct and modified Urca processes,
respectively, where T9 is the temperature in units of 109 K (Yakovlev
et al. 2001). Electrons and muons are transformed into each other
via the lepton-modified Urca processes

e− + X → μ− + X + ν̄μ + νe, μ− + X → e− + X + ν̄e + νμ,

(79)

where X is either a nucleon or a lepton (the direct process is kinemat-
ically forbidden). The relaxation time associated with electromag-
netic processes, of the order of 10−22 s (Easson & Pethick 1979),
is much smaller than the characteristic time-scales of the neutron
star phenomena considered here, so that the matter can be treated
as electrically neutral. This condition reads

np = ne + nμ. (80)

In the newly born proto–neutron stars, the temperatures are of the
order of ∼1011 K or higher so that the equilibrium is reached in a
few microseconds for the modified Urca process or 10 times less for
the direct Urca. As the star cools down to temperatures ∼109 K after
103– 104 yr, the relaxation times rise dramatically to about 20 s for
the direct Urca and several months for the modified Urca. Besides,
when the temperature falls below the critical threshold for the onset
of superfluidity, the relaxation times increase exponentially (Villain
& Haensel 2005). As a consequence, for the short time-scales of
∼1–100 milliseconds relevant for oscillations of mature neutron
stars (like the recently observed QPOs in SGR), the composition of
the star remains essentially frozen and the constituents can therefore
be assumed to be separately conserved

∇μnμ
p = 0, ∇μnμ

e = 0, (81)

which entails by equations (76) and (80), that the other currents
are also conserved ∇μnμ

n = 0 and ∇μnμ
μ = 0 (remembering that

the leptons are comoving with the protons). Let us remark that the
lepton number is not conserved unlike the baryon number, because
the neutron star matter is transparent to neutrinos (except for the
first few seconds after its birth into a hot proto-neutron star).

The initial equilibrium composition of the neutron star core
is obtained from the condition of electroneutrality (80) and the
conditions that the chemical affinities corresponding to the above
processes should vanish (Carter & Chamel 2005b). The chemical
affinity A� of a given reaction � is defined by (Carter & Chamel
2005b)

A� = −
∑

X

N�

X
EX , (82)

where N�

X
and EX are the relevant particle creation numbers and

the energies per particle, respectively. As pointed out by Carter &
Chamel (2005b), the problem arises of determining the reference
frame with respect to which the energies EX have to be measured
when some of the constituents (here neutrons and charged particles)
are moving with different velocities. Since the relative velocity
between the two fluids is expected to be small compared to the fluid
velocities, we assume for simplicity in this section that the particles
are all comoving with four-velocity uμ. It is then natural to define
the energy per particle as EX = −uμπX

μ. In the Newtonian case,
using equation (25) we thus have

EX = μX + mXφ − 1

2
mXv2, (83)

where the chemical potential of a particle species X is defined by
equation (23). Since the mass is conserved in any chemical reaction
� involving non-relativistic particles, the corresponding chemical
affinity (82) reduces to

A� = −
∑

X

N�

X
μX . (84)

In the relativistic case, the energy per particle obtained from equa-
tion (48) is given by

EX = μX , (85)

so that equation (84) is valid for both relativistic and non-relativistic
particles.

We assume that neutrinos have escaped from the star so that we set
Eν� = 0. Both the direct and modified Urca processes, respectively
(77) and (78), have the same affinity given by

AUrca = En − Ep − Ee. (86)

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 388, 737–752



744 N. Chamel

The electron–muon transfusion reactions (79) are characterized by
the affinity

Aμe = Ee − Eμ. (87)

The composition of the core at a given baryon density, nb, can then
be determined by solving the equations AUrca = 0 = Aμe under the
constraint (80). Using (84), this leads to

μn = μe + μp, (88)

μe = μμ. (89)

If the matter is in equilibrium, the static pressure depends only on
the baryon density nb and can be written in the concise form (valid
in both the relativistic case and the Newtonian limit)

�ins = nbμn − Uins (90)

where μn is the neutron chemical potential evaluated at the equi-
librium neutron and proton densities, associated with the baryon
density nb. Let us emphasize that equation (90) is only valid for
neutron star matter in equilibrium. In the general case, the static
pressure is given by equation (31).

8 EVA L UAT I O N O F TH E M I C RO S C O P I C

PA R A M E T E R S

The internal static energy density can be decomposed into several
contributions
Uins

{
nn, np, ne, nμ

} = UN

{
nn, np

} + UCoul

{
np, ne, nμ

}
+UL {ne} + UL

{
nμ

}
, (91)

where UN is the nucleon part, UCoul is the Coulomb part and UL

the lepton (kinetic) part. The Coulomb energy arises from lepton–
lepton, lepton–proton and proton–proton interactions. It is of purely
quantum origin since the classical contribution coming from Pois-
son’s equation vanishes as a result of electroneutrality. We ne-
glect the lepton–lepton interactions (but not the lepton–proton in-
teractions) and we approximate the proton Coulomb energy by
the Hartree–Fock exchange energy of non-relativistic point-like
charged particles

UCoul{np} = −3

4
e2

(
3

π

)1/3

n4/3
p . (92)

Unlike nucleons, leptons are relativistic at the microscopic scale
(note however that this does not imply that their collective motion
is relativistic at the macroscopic scale of the fluid description). Their
kinetic energy is thus given by that of an ideal relativistic Fermi gas
(� = e, μ)

UL {n�} = �c

8π 2λ4
�

[
x�(2x2

� + 1)
√

x2
� + 1 − ln

(
x� +

√
x2

� + 1

)]
,

(93)

where λ� = �/m� c is the Compton wavelength and the dimension-
less parameter x� is defined in terms of the Fermi wave number

kF� = (3π 2n�)
1/3, (94)

by

x� = λ�kF�. (95)

Since the electron mass is set to zero, the electron energy density is
obtained by taking the limit xe → +∞ of equation (93) yielding

UL{ne} = p4
Fe

4π 2(�c)3
, (96)

where pFe = � kFe is the electron Fermi momentum.
The strong interactions among nucleons are described by an ef-

fective Hamiltonian with a two-body force of the Skyrme type
(Bender, Heenen & Reinhard 2003; Stone & Reinhard 2007)

v{r1, r2} = t0(1 + x0Pσ )δ{r} + t1

2
(1 + x1Pσ )

(
k′2δ{r} + δ{r}k2)

+ t2(1 + x2Pσ )k′ · δ{r}k (97)

+ t3

6
(1 + x3Pσ )δ{r}nb{R}α

+ iW0(σ 1 + σ 2) · k′ × δ{r}k, (98)

where r = r1 − r2, R = (r1 + r2)/2, σ 1 and σ 2 are Pauli spin
matrices, k = −i(∇1 − ∇2)/2 is the relative wave vector, k′ is the
complex conjugate of k acting on the left and Pσ = (1+σ 1 ·σ 2)/2 is
the spin-exchange operator. The first term represents the attractive
part of the nucleon–nucleon interaction. The next two momentum-
dependent terms are associated with the finite range of the inter-
action. The density-dependent term proportional to t3 corresponds
to the strongly repulsive short-range part of the interaction and
simulates the effects of three-body interactions (Vautherin & Brink
1972). The last term which leads to spin-orbit coupling in finite nu-
clei does not contribute in uniform matter. In principle, as shown by
Negele & Vautherin (1972), this effective interaction can be derived
from the ‘bare’ nucleon–nucleon interaction by expanding the nu-
cleon density matrix in relative and centre of mass coordinates, r, R,
respectively. In practice, however, the parameters are usually deter-
mined by fitting experimental data and/or results of microscopic
many-body calculations in infinite uniform nuclear matter using the
bare nucleon–nucleon interactions. Such kind of zero range effec-
tive forces are valid whenever the inter particle spacing is much
larger than the range of the nuclear interactions. This condition is
satisfied at densities below ∼3ρ0. Nevertheless, since these effec-
tive forces are usually constrained to reproduce the high-density
equation of state of nuclear matter, it is not completely unreason-
able to apply them at densities above ∼3ρ0. Finite range effects of
the nucleon–nucleon interaction as well as relativistic corrections
are somehow taken into account phenomenologically by the fitting
procedure. For instance, the parametrizations SLy (Chabanat et al.
1997) have been specifically constructed for neutron star studies by
fitting a ‘realistic’ equation of state of neutron matter up to very
high densities ∼10ρ0. Besides, it is worth mentioning that soon
after such effective forces were introduced, Cameron (1959) ap-
plied them to neutron stars and showed that the maximum mass
∼2 M� is compatible with the scenario of neutron star formation
from supernova explosions. The main limitation of these effective
forces is that they describe only nucleonic degrees of freedom. At
densities above ∼3ρ0, other particles like hyperons are likely to
appear (Haensel et al. 2006). Nevertheless, let us remark that for
the most precisely measured neutron star masses in binary radio
pulsars, their central densities lie below ∼3–4ρ0 depending on the
equation of state [see e.g. chapter 6 from Haensel et al. (2006) and
in particular their fig. 6.3]. Our main motivation for using such kind
of effective Hamiltonian is the perspective of a unified treatment of
the interior of neutron stars, including not only the liquid core but
also the solid crust whose microscopic description starting from the
bare nucleon–nucleon interaction is not feasible.

Assuming that the matter in neutron star cores is not polarized
for the densities of interest as suggested by many-body calculations
(see e.g. Bombaci et al. 2006), the nucleon energy density associated
with the force (97) can be calculated using the method outlined in
the classic paper of Vautherin & Brink (1972) and is given by an
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expression of the form

UN

{
nn, np

} = nbmc2 + �
2

2m
τb + B1n

2
b + B2(n2

n + n2
p) + B3nbτb

+ B4(nnτn + npτp) + B5n
2+α
b + B6n

α
b (n2

n + n2
p),

(99)

where

τn = 3

5
(3π 2)2/3n5/3

n , τp = 3

5
(3π 2)2/3n5/3

p , (100)

are, respectively, the neutron and proton kinetic energy densities (in
units of �

2/2m), and τ b = τ n + τp . The B-coefficients are related
to the parameters of the force by the following expressions:

B1 = t0

2

(
1 + x0

2

)
(101)

B2 = − t0

2

(
x0 + 1

2

)
(102)

B3 = 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
(103)

B4 = −1

4

[
t1

(
x1 + 1

2

)
− t2

(
x2 + 1

2

)]
(104)

B5 = t3

12

(
1 + x3

2

)
(105)

B6 = − t3

12

(
x3 + 1

2

)
. (106)

Analytic expressions of the effective masses mn
� and mp

� for the
force (97) have been recently obtained by Chamel & Haensel (2006).
Introducing the parameter β3 = 2mB3/�

2, the coefficients of the
mobility matrix, given by equations (56) and (57), can be expressed
as

Knn = m

nn

1 + β3nn

1 + β3nb
(107)

Kpp = m

np

1 + β3np

1 + β3nb
(108)

Knp = Kpn = m
β3

1 + β3nb
. (109)

Note that as a consequence of the isospin symmetry of the nucleon–
nucleon interactions, we have Knn{nn, np} = Kpp{np, nn} and Knp

(therefore λ1) does not depend on the matter composition but only on
the total baryon density nb = nn + np . This means that entrainment
effects are not affected by the various chemical reactions that may
occur inside the core, as discussed in Section 7. In the high-density
limit β3nn � 1 and β3np � 1, all the elements of the mobility
matrix become equal to Kqq ′ → m/nb. As a consequence, the non-
relativistic effective masses tend to mq

� /m → nq/nb. This asymptotic
limit which corresponds to the strongest entrainment effects (see the
discussion of Section 3) is never reached in neutron star core for the
nucleon–nucleon interactions considered in this work, since m/β3

is typically of the order of ∼10ρ0 (see Table 3).

9 C HOI CE OF EFFECTI VE MI CRO SCOPIC

H A M I LTO N I A N

We have selected effective forces according to the following criteria.
First of all, the chosen forces have to yield reasonable values of the
‘semi-empirical’ saturation properties of infinite uniform symmetric
nuclear matter, namely the equilibrium or saturation density n0 (or
the mass density ρ0 = n0m), the binding energy per nucleon

av = UN{n0/2, n0/2}
n0

− mc2, (110)

the symmetry energy coefficient

as = 1

2

∂2

∂I 2

(
UN

nb

) ∣∣∣∣∣
I=0,nb=n0

(111)

with I = (nn − np)/nb and the incompressibility modulus

K∞ = 9n2
0

∂2

∂n2
b

(
UN{nb/2, nb/2}

nb

) ∣∣∣∣∣
nb=n0

. (112)

Global fits to essentially all the available experimental nuclear mass
data yield n0 � 0.16 fm−3, av � −16 MeV, as � 28–35 MeV and K∞
� 220–240 MeV (Lunney, Pearson & Thibault 2003). Due to the
strong interactions, the mass of the individual nucleons in nuclear
matter is different from the bare mass and can be written as
m

m∗
n

= (1 + I )
m

m∗
s

− I
m

m∗
v

,
m

m∗
p

= (1 − I )
m

m∗
s

+ I
m

m∗
v

(113)

in which m∗
s and m∗

v are the so-called isoscalar and isovector effective
masses, respectively (see e.g. Farine, Pearson & Tondeur 2001).
The isovector effective mass is a crucial microscopic input since
it directly controls the strength of entrainment effects in neutron–
proton mixtures. Indeed, the parameter β3 which determines the
mobility matrix, equations (107), (108) and (109), is given by

nbβ3 = m

m∗
v

− 1. (114)

In principle, this isovector effective mass can be determined from
measurements of the giant isovector electric dipole resonance in
finite nuclei (consisting of relative motions between neutrons and
protons). Nevertheless, estimates are model dependent providing
values m∗

v/m ∼ 0.7–1 at saturation density (see in particular the
discussion of Lunney et al. 2003 in section III-B-5-e). Microscopic
many-body calculations in infinite uniform nuclear matter starting
from the bare nucleon–nucleon interaction lead to an isovector ef-
fective mass around m∗

v/m ∼ 0.7 (see e.g. Zuo et al. 2006). Besides,
we consider only those effective forces that have been constrained
to fit the uniform infinite neutron matter equation of state. Other-
wise, these effective forces could not be reliably extrapolated to the
neutron-rich matter inside neutron star core.

The main deficiencies of effective forces are the existence
of instabilities that are not found by microscopic calculations
(Margueron, Navarro & van Giai 2002; Agrawal, Shlomo & Au
2004; Lesinski et al. 2006). Especially, many Skyrme forces predict
a spurious ferromagnetic transition in neutron matter above some
critical densities. We thus require that no such instabilities occur in
the density range of interest ρ < 3ρ0 by imposing that the dimen-
sionless Landau parameter, usually noted as G0, be greater than −1
in neutron matter (following the analysis of Margueron et al. 2002).
It turns out that this criterion is very restrictive. Several forces that
reproduce reasonably well both the saturation properties of symmet-
ric nuclear matter and the neutron matter equation of state do not
pass this test. For instance, the parametrization RATP (Rayet et al.
1982), which was the first attempt to construct an effective force
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for astrophysical applications, predicts that neutron matter becomes
spin polarized slightly above saturation density � 0.175 fm−3 (the
density for the onset of instability is obtained by solving G0 = −1).
Likewise, the forces SkM and Skyrme 1′, which have been applied
to study dense matter in neutron stars and supernova cores (Bonche
& Vautherin 1982; Lattimer et al. 1985; Lassaut et al. 1987; Lorenz,
Ravenhall & Pethick 1993), yield a ferromagnetic transition density
in neutron matter � 0.212 and � 0.256 fm−3, respectively. We have
found that only the forces of the Saclay–Lyon group (Chabanat
et al. 1997, 1998a,b) and the recent parametrization LNS (Cao et al.
2006) satisfy all the above conditions. They predict a ferromagnetic
instability in neutron matter like the other forces, but at significantly
higher densities ∼3–4ρ0 which we do not consider in this work. The
force LNS seems the most appropriate to describe neutron star core
since it was constructed so as to reproduce recent results of mi-
croscopic diagrammatic calculations (based on Brueckner theory)
of infinite uniform nuclear matter with two- as well as three-body
forces. In particular, this effective force not only fits well the en-
ergy per nucleon in symmetric and asymmetric nuclear matter, but
also fits the nucleon effective masses for different asymmetries and
different densities which directly determine the entrainment coeffi-
cients as previously discussed. Nevertheless, the SLy forces, which
were constrained to reproduce some properties of finite nuclei (apart
from the other constraints that we imposed), would be preferable
if not only the liquid core but also the crust layers would have to
be described with the same underlying microscopic Hamiltonian.
Besides, the equation of state of neutron star matter with the force
SLy4 has been tabulated and widely applied (Haensel & Potekhin
2004). For comparison, we have also considered the parametriza-
tion NRAPR (Steiner et al. 2005) since it was adjusted on the
realistic equation of state of Akmal et al. (1998). Nevertheless,
this force leads to a ferromagnetic instability at rather low density
ρ � 2ρ0.

The parameters of the forces and the associated B-coefficients
introduced in Section 8 are given in Tables 1 and 2, respectively. The
nuclear matter properties predicted by these forces are summarized
in Table 3. Fig. 1 shows the binding energy per particle in uniform
infinite neutron matter defined by E/A = UN {nn, 0}/nn − mc2. Let
us stress that the LNS force was fitted to the latest results of many-
body calculations with two- and three-body forces, while the forces
of the Lyon group were adjusted to reproduce an older neutron
matter equation of state based on variational methods.

Figs 2–4 show the equilibrium composition of cold neutron star
matter, composed of neutrons, protons, electrons and muons, ob-
tained by solving equations (80), (88) and (89). The figures show
the electron, muon and proton fractions, defined, respectively, by
ne/nb, nμ/nb and np/nb, as a function of the mass-energy density
ρ = Uins/c2, which is approximately given by ρ � nbm for nb <

Table 1. Parameters of the chosen Skyrme forces. The units of energy and
length are MeV and fm, respectively.

SLy4 LNS NRAPR

t0 −2488.91 −2484.97 −2719.7
t1 486.82 266.735 417.64
t2 −546.39 −337.135 −66.687
t3 13777.0 14588.2 15042.0
α 1/6 1/6 0.14416
x0 0.834 0.06277 0.16154
x1 −0.344 0.65845 −0.0047986
x2 −1 −0.95382 0.027170
x3 1.354 −0.03413 0.13611

Table 2. B-coefficients of the chosen Skyrme forces. The units of energy
and length are MeV and fm, respectively.

B1 B2 B3 B4 B5 B6

SLy4 −1763.39 1660.1 32.473 49.3128 1925.34 −2128.55
LNS −1281.48 699.233 44.5497 −39.0001 1194.94 −566.35

NRAPR −1469.69 899.595 85.0067 −55.9836 1338.81 −797.364

Table 3. Properties of infinite uniform symmetric nuclear matter for the
chosen Skyrme forces. n0 (fm−3) is the nuclear saturation density, av (MeV)
is the binding energy per nucleon of infinite symmetric nuclear matter, as

(MeV) is the symmetry energy coefficient, K∞ (MeV) is the compression
modulus, m∗

s /m and m∗
v/m are the isoscalar and isovector effective masses,

respectively, nf (fm−3) is the density at which a ferromagnetic instability
occurs in neutron matter. Realistic values of these parameters are n0 � 0.16
fm−3, av � −16 MeV, as � 28–35 MeV, K∞ � 220–240 MeV, m∗

s /m ∼
0.6–0.9, m∗

v/m ∼ 0.7–1 (Lunney et al. 2003).

n0 av as K∞ m∗
s /m m∗

v/m nf

SLy4 0.160 −15.97 32.0 229.9 0.696 0.801 0.59
LNS 0.175 −15.32 33.4 210.9 0.827 0.728 0.62

NRAPR 0.1606 −15.86 32.79 225.7 0.695 0.605 0.28
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Figure 1. Binding energy per particle of uniform infinite neutron matter for
the SLy4, LNS and NRAPR effective forces.

3n0. All forces predict the appearance of muons at nb � 0.12 fm−3

or ρ � 2 × 1014 g cm−3. The forces LNS and NRAPR yield sim-
ilar composition. They both predict a slightly larger (respectively
smaller) proton fraction than the force SLy4 above (respectively
below)ρ0. This can be understood by remarking that equation (88)
can be approximately written as (Muther, Prakash & Ainsworth
1987)

�c(3π 2nbxe)
1/3 ≈ 4S{nb}(1 − 2xp), (115)

where the symmetry energy S{nb} defined by

S{nb} = UN{nb, 0}
nb

− UN{nb/2, nb/2}
nb

> 0 (116)

represents the cost in (nuclear) energy per particle to replace protons
by neutrons in symmetric nuclear matter. From equation (115), we
have

xp ≈ xe ≈
(

4S{nb}
�c

)3 1

3π 2nb
. (117)
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Figure 2. Equilibrium fractions nX /nb of protons (p), electrons (e) and
muons (μ) inside neutron star core predicted by the SLy4 effective force.
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Figure 3. Equilibrium fractions nX /nb of protons (p), electrons (e) and
muons (μ) inside neutron star core predicted by the LNS effective force.
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Figure 4. Equilibrium fractions nX /nb of protons (p), electrons (e) and
muons (μ) inside neutron star core predicted by the NRAPR effective force.
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Figure 5. Symmetry energyS{nb} (in MeV) for the SLy4, LNS and NRAPR
effective forces as a function of the baryon density nb = nn + np .
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Figure 6. Static pressure of neutron star matter in equilibrium for the
Skyrme effective forces and for the BL2 relativistic mean field model.

As can be seen in Fig. 5, the forces LNS and NRAPR yield a
larger (respectively smaller) symmetry energy than the force SLy4
above (respectively below) the saturation density n0 (note that the
symmetry energy coefficient as � S{n0}).

Fig. 6 shows the static pressure (90) of npeμ matter in equilibrium
as a function of the mass-energy density ρ = Uins/c2. In Figs 7–
9, we compare the effective masses defined by equation (56) for
the two Skyrme forces. In both cases, the neutron effective mass
is close to the bare nucleon mass while the proton effective mass
is significantly reduced. This is consistent with the inequality (58)
which implies that

mn
�

m
− mp

�

m
> I, (118)

with I = (nn − np)/nb. The relativistic effective masses defined by
equation (61) are shown in Figs 10–12. For simplicity, we have con-
sidered that neutrons and protons are comoving so that the effective
masses are given by

m̃q
�

m
= mq

�

m
+ μq

mc2
− 1. (119)

These relativistic effective masses are significantly different com-
pared to the non-relativistic ones. In particular, both nuclear forces
predict that the neutron relativistic effective mass is larger than the
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Figure 7. Neutron and proton effective masses, respectively, mn
�/m and

mp
� /m, defined by equation (56), in neutron star matter in equilibrium for

the SLy4 effective force.
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Figure 8. Neutron and proton effective masses, respectively mn
�/m and

mp
� /m, defined by equation (56), in neutron star matter in equilibrium for

the LNS effective force.
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Figure 9. Neutron and proton effective masses, respectively mn
�/m and

mp
� /m, defined by equation (56), in neutron star matter in equilibrium for

the NRAPR effective force.
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Figure 10. Relativistic neutron and proton effective masses, respectively
m̃n

�/m and m̃
p
� /m, defined by equation (61), in neutron star matter in equi-

librium for the SLy4 effective force. Neutrons and protons are comoving.
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Figure 11. Relativistic neutron and proton effective masses, respectively
m̃n

�/m and m̃
p
� /m, defined by equation (61), in neutron star matter in equi-

librium for the LNS effective force. Neutrons and protons are comoving.
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Figure 12. Relativistic neutron and proton effective masses, respectively
m̃n

�/m and m̃
p
� /m, defined by equation (61), in neutron star matter in equi-

librium for the NRAPR effective force. Neutrons and protons are comoving.
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bare mass. Moreover, from equations (118) and (88), we have

m̃n
�

m
− m̃p

�

m
= mn

�

m
− mp

�

m
+ μe

mc2
> I + μe

mc2
, (120)

so that the splitting of the relativistic effective masses is larger than
that of the non-relativistic ones since μe ≥ 0.

10 COMPARISON W ITH RELATIVISTIC MEAN

FIE LD MOD ELS

A few years ago, Comer & Joynt (2003) developed relativistic two-
fluid models of superfluid neutron star cores. They have determined
the master function � using the effective relativistic mean field
theory (Glendenning 2000). In the model they considered, the inter-
actions between nucleons arise from the exchange of two massive
mesons: the scalar meson σ with mass mσ and the vector meson
ωμ with mass mω. The former accounts for the long-range attractive
part of the nucleon–nucleon interaction while the latter gives rise to
the short-range repulsive part. In the nuclear field theory, particles
are described by a microscopic Lagrangian density L (not to be
confused with the macroscopic Lagrangian density � of the fluids)
given by (using units c = � = 1)

L = ψ̄[γ μiDμ − mD]ψ + 1

2

[
(∂μσ )(∂μσ ) − m2

σ σ 2
]

− 1

4
ωμνωμν + 1

2
m2

ωωμωμ

(121)

with the nucleon field ψ and the antisymmetric tensor ωμν ≡∂μων −
∂νωμ(γ μ denote the Dirac matrices and ψ̄ ≡ ψ†γ 0). The nucleon–
meson couplings are introduced in the gauge covariant derivative

Dμ = ∂μ + i gωωμ (122)

and in the Dirac effective nucleon mass

mD = m − gσ σ (123)

where gω and gσ are dimensionless coupling constants. The field
equations, which actually only depend on the quantities c2

σ = g2
σ /m2

σ

and c2
ω = g2

ω/m2
ω in uniform infinite matter, are solved in the Hartree

approximation (exchange terms are neglected) ignoring the contri-
butions of antiparticles (the so-called no Dirac sea approximation).

As for the non-relativistic energy density functional theory dis-
cussed in Section 9, the free parameters of the model have to be
determined by fitting to some nuclear matter properties. Comer &
Joynt (2003) adopted two parameter sets from Glendenning (2000)
(chapter 4, table 4.4). However, these parameters were not obtained
for the Lagrangian density given by equation (121) but for a more
elaborate class of models which includes scalar self-interactions as
well as the vector–isovector rho meson. As a result, by dropping
these extra terms in the Lagrangian density L, the resulting σ − ω

models considered by Comer & Joynt (2003) predict unphysical nu-
clear matter properties, as can be seen in Table 5 (see the discussion
in Section 9). Besides, these models predict that neutron matter is
bound as shown in Fig. 14, unlike quantum many-body calculations
using realistic nucleon–nucleon interactions. Note also that these
models predict that neutrons and protons have the same (Dirac)
effective mass mD for any nuclear asymmetry I = (nn − np)/nb,
in contradiction to microscopic calculations (see e.g. van Dalen &
Fuchs 2007, especially their figure 4). As such, these models are
therefore unsuitable for applications to neutron stars as pointed out
by Glendenning (2000). In order to reproduce the properties of finite
nuclei and infinite nuclear matter with the same level of accuracy
as the non-relativistic effective forces discussed in Section 9, other

Table 4. Parameters of the σ − ω relativistic mean
field models discussed in this work. GLI and GLII
are the models proposed by Glendenning (2000) and
employed by Comer & Joynt (2003) after dropping
scalar self-interactions and the rho meson. The mod-
els BL1–BL4 are new parameter sets introduced in
this work (the coupling constants are given in fm2).
Note that for the baryon mass we have taken the av-
erage of the neutron and proton masses as Comer &
Joynt (2003).

c2
σ c2

ω

GLI 12.684 7.148
GLII 8.403 4.233
BL1 14.6063 11.0544
BL2 9.3353 7.2624
BL3 23.2707 14.4061
BL4 7.79346 6.06748

mesons must be included. Besides, non-linear self-meson interac-
tions must be introduced (see e.g. chapter 4 of Glendenning 2000).

For the present time, we will restrict the discussion of the entrain-
ment effects to the σ − ω model. The models considered by Comer
& Joynt (2003) can be significantly improved (keeping in mind the
inherent limitations of such models) by simply refitting the param-
eters. With only two free parameters cσ and cω, only two of the
symmetric infinite nuclear matter properties listed in Table 3 can be
fitted exactly. We have constructed three new parameter sets BL1–
BL3 by fixing the saturation density to n0 = 0.16 fm−3 and (i) the
binding energy per nucleon to av = −16 MeV for BL1, (ii) the Dirac
effective mass to mD = 0.7 m for BL2 and (iii) the symmetry energy
to as = 28 MeV for BL3 (the fitting procedure did not converge
for as = 30 MeV). The parameters of these new models are given
in Table 4. As can be seen in comparing Table 3 and 5, the overall
agreement with empirical nuclear data is still very poor reflecting
the lack of flexibility of these σ − ω models. The most important
constraint for application to neutron stars is to reproduce at least the
equation of state of neutron matter. We have thus constructed the
parameter set BL4 by fitting the realistic equation of state of Akmal
et al. (1998). The result of the fit is shown in Fig. 14, as well as
the predictions of the other mean field models. This should be com-
pared with the results of non-relativistic effective forces in Fig. 1.
Note that the parameter sets GLI, GLII and BL3 incorrectly predict
the existence of bound neutron matter. From these four models, it
seems that the best compromise is achieved for the parameter set
BL2, yielding reasonable values of the saturation density, compres-
sion modulus, Dirac effective mass (which is an important quantity
for entrainment effects as discussed in Section 9) together with a
fairly good fit of the neutron matter equation of state. Note, how-
ever, that this model is still very crude compared to the SLy4 or
LNS Skyrme forces presented in Section 9. In particular, the values
of the symmetry energy as and the binding energy per nucleon av ,
which are two basic nuclear matter properties, are unrealistic.

We have applied the general expressions derived by Comer &
Joynt (2003) within the σ − ω mean field models to evaluate the
entrainment parameters and to compare the results with those ob-
tained using the non-relativistic effective energy density functional
theory. We have greatly improved the models considered by Comer
& Joynt (2003) (i) by refitting the meson coupling constants leading
to a better agreement with nuclear data as discussed previously and
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Figure 13. Equilibrium fractions nX /nb of protons (p), electrons (e) and
muons (μ) inside neutron star core predicted by the BL2 relativistic mean
field model.

(ii) by including muons which affect the composition of neutron
star core and contribute to the pressure. Leptons are treated as ideal
relativistic Fermi gases as discussed in Section 9. The parameters
λ0 and λ1 in the expansion of the master function �, introduced in
Section 4, are given by

λ0 = �|0 − UL

{
nμ

}
, λ1 = −A|0 (124)

where A|0 and �|0 are given by equations (63) and (A8), respec-
tively, in Comer & Joynt (2003). Note that we have added the muon
contribution in the Lagrangian density. Using the nucleon chemical
potentials given by equations (A9) and (A10) of that paper, together
with the lepton chemical potentials defined by equation (23), we
have determined the equilibrium composition of the neutron star
core assuming comoving particles as discussed in Section 7. Re-
sults are shown in Fig. 13 for the parameter set BL2. The proton
fraction is very small at low densities unlike that predicted by non-
relativistic effective forces. As discussed in Section 9, this can be
understood from the very small (incorrect) value of the symmetry
energy as at saturation density (see Table 5). As can be seen in
Fig. 6, the equation of state is, however, similar to that obtained
for the non-relativistic effective nucleon–nucleon interactions. The
reason is that matter in neutron star core is almost pure neutron
matter and all models SLy4, LNS and BL2 reproduce reasonably
well the neutron matter equation of state (see Figs 1 and 14).

Table 5. Properties of infinite uniform symmetric nuclear matter for σ − ω

relativistic mean field models. The quantities shown are the same as those
introduced in Table 3. Realistic values are n0 � 0.16 fm−3, av � −16 MeV,
as � 28–35 MeV, K∞ � 220–240 MeV (Lunney et al. 2003). Note that
recent relativistic many-body calculations by van Dalen & Fuchs (2007)
predict that the Dirac effective mass at saturation is mD � 0.7 m. GLI and
GLII are the models employed by Comer & Joynt (2003) while models
BL1–BL4 are new parameter sets introduced in this work.

n0 av as K∞ mD/m

GLI 0.28 −66.43 34.69 2117.5 0.385
GLII 0.41 −66.69 41.29 2252.0 0.407
BL1 0.16 −16 20.09 674.0 0.543
BL2 0.16 −1.70 16.29 249.0 0.700
BL3 0.16 −72.24 28 2217.4 0.338
BL4 0.14 1.7358 13.88 130.5 0.774

0 0.1 0.2 0.3 0.4 0.5 0.6

n
n
 [fm

-3
]

-40

-20

0

20

40

60

80

100

120

140

E
/A

 [
M

eV
]

APR
GLI
GLII BL1

BL2
BL3 BL4

Figure 14. Energy per particle of uniform infinite neutron matter for rela-
tivistic σ − ω mean field models. The curve labelled APR is the ‘realistic’
equation of state of Akmal et al. (1998), using the analytical fit of Heiselberg
& Hjorth-Jensen (2000). The rest-mass energy has been subtracted out. GLI
and GLII are the models used by Comer & Joynt (2003). BL1–BL4 are the
parameter set constructed in this work.
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Figure 15. Relativistic neutron and proton effective masses, respectively
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p
� /m, defined by equation (61), in neutron star matter in equi-
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field models. Neutrons and protons are comoving.

The relativistic effective masses introduced in Section 4 are given
by

m̃n
� = nn B|0, m̃p

� = np C|0, (125)

where B|0 and C|0 are given by equations (64) and (65), respec-
tively, in Comer & Joynt (2003). As shown in Fig. 15, the neutron
effective mass predicted by the model GL2 is larger than the bare
nucleon mass while the proton effective mass is smaller, as obtained
for non-relativistic models. For comparison, we have also plotted
the effective masses obtained with the model GLI considered by
Comer & Joynt (2003). The neutron effective mass obtained with
this parameter set is decreased at low densities compared to the
ordinary mass in contradiction to previous results. This is a con-
sequence of the fact that the model GLI predicts (incorrectly) that
neutron matter is bound, as shown in Fig. 14, so that μn < mc2.
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1 1 C O N C L U S I O N

The recent detection of QPOs in SGR (most likely associated with
seismic vibrations triggered by magnetic crust quakes) and future
observations with gravitational wave detectors offer new possibili-
ties to probe the interior of neutron stars and to test the theories of
dense matter. Nevertheless, the reliable identification of the various
oscillation modes calls for a consistent theoretical description of
the star. As a first step towards this goal, we have constructed fully
self-consistent relativistic two-fluid models of neutron star cores,
composed of superfluid neutrons and a conglomerate of protons,
electrons and possibly muons. The mutual entrainment effects be-
tween the two fluids, resulting from the strong nucleon–nucleon in-
teractions, are properly taken into account. We have determined the
expression of the Lagrangian density in the variational framework
developed by Brandon Carter and co-workers. We have also shown
how to make the correspondence with non-relativistic models by ap-
plying the 4D covariant formulation of Newtonian hydrodynamics
of Carter & Chamel (2004). We have determined all the coefficients
of these models consistently with the same microscopic approach.
In the perspective of describing not only the liquid core of neutron
stars but also the crust layers, we have employed the nuclear energy
density functional theory which has been already successfully ap-
plied to study both isolated nuclei and infinite nuclear matter. As an
example, we have calculated the composition, the equation of state
and the entrainment matrix of neutron star core for three different
nuclear models: the popular SLy4 model for which the equation of
state of both the crust and the liquid core has already been tabulated
(Haensel & Potekhin 2004) and the more recent LNS and NRAPR
models which have been entirely constructed from recent realistic
many-body calculations. For comparison, we have also considered
relativistic σ − ω mean field models that have been first applied by
Comer & Joynt (2003). We have improved their models by refitting
the parameters in order to obtain a better agreement with nuclear
data, but still we could not reach the same level of accuracy as the
non-relativistic models mentioned above. This would require the
introduction of additional meson fields, especially the rho meson.
Besides, self-meson couplings should be taken into account. Nu-
merical calculations with both effective energy density functional
and relativistic mean field models have shown that the dynami-
cal effective nucleon masses arising from entrainment effects are
smaller than the ordinary mass in the Newtonian case. Relativistic
effects increase effective masses, since all forms of internal energy
contribute to the mass. A rather unexpected consequence, which
has not been usually discussed in the literature, is that relativistic
effective masses can be even larger than the bare mass in the liquid
core of neutron stars.
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