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Part 2: Superfluidity and
superconductivity in neutron stars



Electron superconductivity in neutron stars
The surface layers of non-accreting neutron stars are mostly
composed of iron.
Iron is superconducting at density
ρ ' 8.2 g cm−3 with Tc ' 2 K, much lower
than neutron-star surface temperatures.
Shimizu et al., Nature 412, 316 (2001).

In the deeper layers of neutron stars at densities ρ & 104 g cm−3,
atoms are fully ionised. Electrons can be treated as a Fermi gas:

rs ≡ d/a0
a0 ≡ ~2/mee2

d ≡ (3/4πne)1/3

Ceperley and Alder, PRL45, 566(1980).

In ordinary metals
rs ∼ 2− 6

In neutron star crust
rs ∼ 10−5 − 10−2
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Electron superconductivity in neutron stars
The critical temperature of a uniform non-relativistic electron gas
in a background of ions (jelium) is given by (Tpi is the plasma
temperature)

Tc = Tpi exp
(
−8~vFe/πe2)⇒ Tc ∝ exp(−ζ(ρ/ρord)1/3)

with ρord = mu/(4πa3
0/3).

Therefore Tc decreases with increasing density.

At densities above ∼ 106 g cm−3, electrons become relativistic
vFe ∼ c so that (α = e2/~c ' 1/137)

Tc = Tpi exp (−8/πα) ∼ 0

Ginzburg, J. Stat. Phys. 1, 3(1969).

Electrons in neutron stars are not superconducting.
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Nuclear superfluidity and superconductivity
The implications of the BCS theory (published in January 1957) for
atomic nuclei were first discussed by A. Bohr, B. R. Mottelson, and D.
Pines during the Summer of 1957.
D. Pines in “BCS: 50 Years” (World Scientific, 2011), pp.85-105.

A. Bohr, B. R. Mottelson, and D.
Pines speculated that nuclear
pairing might explain the energy
gap in the excitation spectra of
nuclei.
Phys. Rev. 110, 936 (1958)

They also anticipated that nuclear pairing could explain odd-even
mass staggering, and the reduced moments of inertia of nuclei.

There is however a fundamental difference between nuclei and
electrons in solids: nuclei contain a small number of particles.
“the present data are insufficient to indicate the limiting value for the
gap in a hypothetical infinitely large nucleus.” Bohr, Mottelson, Pines.
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Superfluidity and superconductivity in neutron stars

Before the discovery of pulsars in 1967, several superconductors
were known but only 4He was found to be superfluid (superfluidity of
3He was discovered in 1972).

N.N. Bogoliubov, who developed a microscopic
theory of superfluidity and superconductivity,
was the first to explore its application to nuclear
matter.
Dokl. Ak. nauk SSSR 119, 52 (1958).

In 1959, Migdal predicted neutron-star superfluidity, which was first
studied by Ginzburg & Kirzhnits in 1964.
Migdal, Nucl. Phys. 13, 655 (1959)
Ginzburg & Kirzhnits, Zh. Eksp. Teor. Fiz. 47, 2006 (1964)



Nuclear superfluidity and superconductivity

At low enough temperatures, nucleons may form pairs that can
condense into a superfluid/superconducting phase.

Most attractive pairing channels
(δ > 0):

1S0 at low densities
3P2 at high densities

A. Gezerlis, C. J. Pethick, A. Schwenk,
arXiv:1406.6109
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Microscopic calculations of pairing in homogeneous nuclear matter:
diagrammatic methods
variational methods
quantum Monte Carlo methods.
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Pairing in neutron matter: BCS
Lowest order approximation: BCS theory.
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1S0 pairing gaps are essentially independent of the NN potential,
the role of the NNN potential is negligible.
3P2 pairing gaps are very dependent on the NN and NNN
potentials.



1S0 pairing in neutron matter: beyond BCS

The 1S0 pairing gaps are strongly suppressed by medium effects, and
to a lesser extent by NNN forces.
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At very low densities, the 1S0 BCS pairing gap is reduced by a factor
(4 exp(1))−1/3 ' 0.45.
Gorkov&Melik-Barkhudarov, Sov. Phys. JETP, 13, 1018, (1961).



3P2 pairing in neutron matter: beyond BCS
The 3P2 pairing gaps are also suppressed by medium effects, but are
enhanced by NNN forces.
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Pairing in neutron star cores

The interior of a neutron star is not only made of neutrons, but
consists of protons, leptons, hyperons, and possibly mesons, and
even deconfined quarks.

Possible phases:
1S0 and 3P2 proton pairing
neutron-proton pairing
hyperon-hyperon pairing (1S0 ΛΛ)
hyperon-nucleon pairing (1S0 nΛ, 1S0 nΣ−, 3SD1 nΣ−)
quark pairing (see Armen Sedrakian’s lecture)

Although 1S0 proton superconductivity is well established, the other
superfluid/superconducting phases have been much less studied.



Pairing in neutron star crusts
The neutron superfluid in the inner crust of a neutron star coexists
with an assembly of neutron-proton clusters, which influence
superfluidity.

Because of inhomogeneities, microscopic
calculations based on realistic interactions are
not feasible.

Phenomenological approaches:
local density approximation
semi-classical methods
self-consistent “mean-field” methods
beyond “mean-field” methods

All are based on the density functional theory. Schuetrumpf et al., PRC87, 055805

(2013)

Chamel& Haensel, Living Rev. Relativity 11, 10 (2008)
http://www.livingreviews.org/lrr-2008-10

http://www.livingreviews.org/lrr-2008-10


Nuclear energy density functional theory in a nut shell
The energy E is expressed as a functional of the “normal” and
“abnormal” density matrices:

nq(rrr , σ; r ′r ′r ′, σ′) =< Ψ|cq(r ′r ′r ′σ′)†cq(rrrσ)|Ψ >,
ñq(rrr , σ; r ′r ′r ′, σ′) = −σ′ < Ψ|cq(r ′r ′r ′ − σ′)cq(rrrσ)|Ψ >

where cq(rrrσ)† and cq(rrrσ) are the creation and destruction operators
for nucleon of type q (q = n,p for neutrons, protons) at position rrr with
spin σ (σ = ±1 for spin up and down).

In turn the density matrices can be expressed in terms of the
quasiparticle wave functions ϕ(q)

1k (rrr) and ϕ(q)
2k (rrr) as

nq(rrr , σ; r ′r ′r ′, σ′) =
∑
k(q)

ϕ
(q)
2k (rrr , σ)ϕ

(q)
2k (r ′r ′r ′, σ′)∗

ñq(rrr , σ; r ′r ′r ′, σ′) = −
∑
k(q)

ϕ
(q)
2k (rrr , σ)ϕ

(q)
1k (r ′r ′r ′, σ′)∗ = −

∑
k

ϕ
(q)
1k (rrr , σ)ϕ

(q)
2k (r ′r ′r ′, σ′)∗.

The ground-state energy is such as to minimize the functional
E = E [nq(rrr , σ; r ′r ′r ′, σ′), ñq(rrr , σ; r ′r ′r ′, σ′)] under the constraint of fixed
nucleon numbers.
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Nuclear energy density functional theory in a nut shell
In the simplest cases, E is written as the integral of a local functional

E =

∫
E
[
nq(rrr),∇∇∇nq(rrr), τq(rrr),JJJq(rrr), ñq(rrr)

]
d3rrr

where

nq(rrr) =
∑
σ=±1

nq(rrr , σ; rrr , σ)

τq(rrr) =
∑
σ=±1

∫
d3r ′r ′r ′ δ(rrr − r ′r ′r ′)∇∇∇ ·∇′∇′∇′nq(rrr , σ; r ′r ′r ′, σ)

JJJq(rrr) = −i
∑

σ,σ′=±1

∫
d3r ′r ′r ′ δ(rrr − r ′r ′r ′)∇∇∇nq(rrr , σ; r ′r ′r ′, σ′)× σσ′σ

ñq(rrr) =
∑
σ=±1

ñq(rrr , σ; rrr , σ)

and σσσ′ denotes the Pauli spin matrices.

Duguet, Lecture Notes in Physics 879 (Springer-Verlag, 2014), p. 293
Dobaczewski & Nazarewicz, in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.40-60



Nuclear energy density functional theory in a nut shell
Minimizing E

[
ϕ

(q)
1k (rrr), ϕ

(q)
2k (rrr)

]
under the constraint of fixed nucleon

numbers lead to the Hartree-Fock-Bogoliubov equations
(analogous to Bogoliubov-de Gennes equations for superconductors):∑

σ′

(
hq(rrr)σσ′ ∆q(rrr)δσσ′

∆q(rrr)δσσ′ −hq(rrr)σσ′

)(
ϕ

(q)
1k (rrr , σ′)

ϕ
(q)
2k (rrr , σ′)

)
= Ek

(
ϕ

(q)
1k (rrr , σ)

ϕ
(q)
2k (rrr , σ)

)

hq(rrr)σ′σ ≡ −∇∇∇ ·
δE

δτq(rrr)
∇∇∇δσσ′ +

δE
δnq(rrr)

δσσ′ − i
δE

δJJJq(rrr)
· ∇∇∇× σσσσ′σ − µqδσσ′ ,

µq are the chemical potentials (Lagrange multipliers),

∆q(rrr) ≡ δE
δñq(rrr)

is called the pair potential or the pairing field.

With suitable boundary conditions, these equations can not only
describe the bulk neutron superfluid in neutron-star crusts, but also
quantized vortices.



Intermission: functional derivative

Let us consider that the energy E [n(rrr)] is a functional of the density
n(rrr) and its gradient.

The functional derivative is defined by

δE =

∫
d3r

δE
δn(rrr)

δn(rrr) ≡ lim
ε→0

E [n(rrr) + εδn(rrr ]− E [n(rrr)]

ε
=

dE
dε

∣∣∣∣
ε=0

where δn(rrr) is an arbitrary variation of the density that vanishes at the
boundary of the integration domain.

Example: E [n(rrr)] =

∫
d3r E(rrr) with E(rrr) = E(n(rrr),∇∇∇n(rrr))∫

d3r
δE
δn(rrr)

δn(rrr) =

∫
d3r

[
∂E(rrr)

∂n(rrr)
δn(rrr) +

∂E(rrr)

∂∇∇∇n(rrr)
· ∇∇∇δn(rrr)

]



Intermission: functional derivative

Let us consider that the energy E [n(rrr)] is a functional of the density
n(rrr) and its gradient.

The functional derivative is defined by

δE =

∫
d3r

δE
δn(rrr)

δn(rrr) ≡ lim
ε→0

E [n(rrr) + εδn(rrr ]− E [n(rrr)]

ε
=

dE
dε

∣∣∣∣
ε=0

where δn(rrr) is an arbitrary variation of the density that vanishes at the
boundary of the integration domain.

Example: E [n(rrr)] =

∫
d3r E(rrr) with E(rrr) = E(n(rrr),∇∇∇n(rrr))∫

d3r
δE
δn(rrr)

δn(rrr) =

∫
d3r

[
∂E(rrr)

∂n(rrr)
−∇∇∇ · ∂E(rrr)

∂∇∇∇n(rrr)

]
δn(rrr)



Intermission: functional derivative

Let us consider that the energy E [n(rrr)] is a functional of the density
n(rrr) and its gradient.

The functional derivative is defined by

δE =

∫
d3r

δE
δn(rrr)

δn(rrr) ≡ lim
ε→0

E [n(rrr) + εδn(rrr ]− E [n(rrr)]

ε
=

dE
dε

∣∣∣∣
ε=0

where δn(rrr) is an arbitrary variation of the density that vanishes at the
boundary of the integration domain.

Example: E [n(rrr)] =

∫
d3r E(rrr) with E(rrr) = E(n(rrr),∇∇∇n(rrr))

δE
δn(rrr)

=
∂E(rrr)

∂n(rrr)
−∇∇∇ · ∂E(rrr)

∂∇∇∇n(rrr)



Effective nuclear energy density functional

In principle, the nuclear functional can be inferred from
realistic NN interactions (i.e. fitted to experimental NN phase
shifts) using many-body methods

E =
~2

2M
(τn + τp) + A(ρn, ρp) + B(ρn, ρp)τn + B(ρp, ρn)τp

+C(ρn, ρp)(∇ρn)2 + C(ρp, ρn)(∇ρp)2 + D(ρn, ρp)(∇ρn) · (∇ρp)

+ Coulomb, spin-orbit and pairing
Drut,Furnstahl and Platter,Prog.Part.Nucl.Phys.64(2010)120.

But this is a very difficult task so in practice,
phenomenological functionals are employed.
Bender,Heenen and Reinhard,Rev.Mod.Phys.75, 121 (2003).
Bulgac in “50 years of Nuclear BCS” (World Scientific Publishing, 2013),
pp.100-110
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Effective nucleon-nucleon interaction
Semi-local functionals can be constructed from Skyrme effective
nucleon-nucleon interactions of the form

vij = t0(1 + x0Pσ)δ(rrr ij ) +
1
2

t1(1 + x1Pσ)
1
~2

[
p2

ij δ(rrr ij ) + δ(rrr ij ) p2
ij
]

+t2(1 + x2Pσ)
1
~2 pppij .δ(rrr ij )pppij +

1
6

t3(1 + x3Pσ)ρ(rrr)α δ(rrr ij )

+
i
~2 W0(σi + σj ) · pppij × δ(rrr ij )pppij

using the “mean-field” approximation, where rrr ij = rrr i − rrr j ,
rrr = (rrr i + rrr j )/2, pppij = −i~(∇∇∇i −∇∇∇j )/2 is the relative momentum, and
Pσ is the two-body spin-exchange operator.

The parameters ti , xi , α, W0 are fitted to some experimental and/or
microscopic nuclear data.

Remark: fitting directly the energy functional E (to nuclear-matter
calculations for instance) may lead to self-interaction errors.
Chamel, Phys. Rev. C 82, 061307(R) (2010).



Semi-classical methods
Local density approximation (ξ � `)
assuming matter is locally homogeneous: ∆(rrr) = ∆(nn(rrr),np(rrr))

Semi-classical approximation (λF � `)
~→ 0 limit of the BCS gap equation
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Schuck & Vinas, in ”50 years of nuclear BCS” (World Scientific Publishing, 2013), pp. 212-226

Superfluidity is highly non-local due to proximity effects (the
coherence length is large compared to spatial density fluctuations).
But quantum effects are not fully taken into account.



Semi-classical methods
Local density approximation (ξ � `)
assuming matter is locally homogeneous: ∆(rrr) = ∆(nn(rrr),np(rrr))
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Band theory
Floquet-Bloch theorem

I found to my delight that the wave differed from the plane
wave of free electrons only by a periodic modulation.

Bloch, Physics Today 29 (1976), 23-27.

The single-particle wave functions can be
expressed as

ϕαkkk (rrr) = ei kkk·rrr uαkkk (rrr)

where uαkkk (rrr + `̀̀) = uαkkk (rrr) and `̀̀ are lattice vectors.

α (band index) accounts for the rotational symmetry around each
lattice site,
kkk (wave vector) accounts for the translational symmetry of the
crystal.

Chamel, Goriely, Pearson, in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.284-296.
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Band theory
By symmetry, the crystal can be partitioned into identical primitive
cells. The HFB equations need to be solved only inside one cell.

The shape of the cell depends on the crystal symmetry

Example : body centered
cubic lattice

The boundary conditions are fixed by the Floquet-Bloch theorem

ϕαkkk (rrr + `̀̀) = ei kkk ·̀`̀ϕαkkk (rrr)

kkk can be restricted to the first Brillouin zone (primitive cell of the
reciprocal lattice) since for any reciprocal lattice vector KKK

ϕαkkk+KKK (rrr) = ϕαkkk (rrr)
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Example of neutron band structure

Body-centered cubic crystal of zirconium like clusters with N = 160
(70 unbound) and ρ̄ = 7× 1011 g.cm−3
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Chamel et al, Phys.Rev.C75 (2007), 055806



Anisotropic multi-band neutron superfluidity
In the deep layers of neutron-star crusts, the spatial fluctuations of
∆(rrr) are small compared to ϕαkkk (rrr) so that∫

d3rrr ϕ∗αkkk (rrr)∆(rrr)ϕβkkk (rrr) ≈ δαβ
∫

d3rrr |ϕαkkk (rrr)|2∆(rrr) .

In this decoupling approximation, the Hartree-Fock-Bogoliubov
equations reduce to the BCS equations

∆αkkk = −1
2

∑
β

∑
k ′k ′k ′

v̄pair
αkkkβk ′k ′k ′

∆βk ′k ′k ′

Eβk ′k ′k ′
tanh

Eβk ′k ′k ′

2kBT

v̄pair
αkkkβk ′k ′k ′ =

∫
d3r vπ[ρn(rrr), ρp(rrr)] |ϕαkkk (rrr)|2|ϕβk ′k ′k ′(rrr)|2

Eαkkk =
√

(εαkkk − µ)2 + ∆2
αkkk

εαkkk , µ and ϕαkkk (rrr) are obtained from band structure calculations.
Chamel et al., Phys.Rev.C81,045804 (2010).
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Analogy with terrestrial multi-band superconductors

Multi-band superconductors were first studied by Suhl et al. in 1959
but clear evidence were found only in 2001 with the discovery of
MgB2 (two-band superconductor)

In neutron-star crusts,
the number of bands can be huge ∼ up to a thousand!
both intra- and inter-band couplings must be taken into account
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Neutron pairing gaps
Example at n̄ = 0.06 fm−3 with BSk16
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∆αkkk (T )/∆αkkk (0) is a universal function of T
The critical temperature is approximately given by the usual BCS
relation Tc ' 0.567∆F

Chamel et al., Phys.Rev.C81,045804 (2010).



Neutron pairing gaps vs density
n̄ is the average nucleon density
Z is the number of protons in the Wigner-Seitz cell
A is the number of nucleons in the Wigner-Seitz cell
nf

n is the density of unbound neutrons
∆u is the gap in neutron matter at density nf

n
∆̄u is the gap in neutron matter at density nn

n̄ [fm−3] Z A nf
n [fm−3] ∆F [MeV] ∆u [MeV] ∆̄u [MeV]

0.07 40 1218 0.060 1.44 1.79 1.43
0.065 40 1264 0.056 1.65 1.99 1.65
0.06 40 1260 0.051 1.86 2.20 1.87
0.055 40 1254 0.047 2.08 2.40 2.10
0.05 40 1264 0.043 2.29 2.59 2.33

Chamel et al., Phys.Rev.C81,045804 (2010).

the nuclear clusters lower the gap by 10− 20%

both bound and unbound neutrons contribute to the gap



Pairing field and local density approximation
The effects of inhomogeneities on neutron superfluidity can be
directly seen in the pairing field

∆n(rrr) = −1
2

vπn[nn(rrr),np(rrr)]ñn(rrr) , ñn(rrr) =
Λ∑
α,kkk

|ϕαkkk (rrr)|2 ∆αkkk

Eαkkk

Neutron pairing field for n̄ = 0.06 fm−3 at T = 0
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Pairing field at finite temperature

At T > 0, the neutron pairing field is given by

∆n(rrr) = −1
2

vπn[nn(rrr),np(rrr)]ñn(rrr) , ñn(rrr) =
Λ∑
α,kkk

|ϕαkkk (rrr)|2 ∆αkkk

Eαkkk
tanh

Eαkkk

2kBT

Neutron pairing field for n̄ = 0.06 fm−3

The superfluid becomes more and
more homogeneous as T
approaches Tc
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Impact on thermodynamic quantities : specific heat
Example at n̄ = 0.06 fm−3 with BSk16
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Band structure effects are small. This remains true for
non-superfluid neutrons.
Chamel et al, Phys. Rev. C 79, 012801(R) (2009)

The renormalization of Tc comes from the density dependence of
the pairing strength.



Pairing in the shallow layers of neutron-star crusts
In the shallow layers, the decoupling approximation is not very
accurate. On the other hand, solving the full HFB equations is
computationally very expensive.

Approximation proposed by Wigner&Seitz in 1933 in the study of
metallic sodium (only one valence electron per site):

Consider only kkk = 0 (i.e. strictly periodic wave functions),
Replace the W-S cell by a simpler cell of same volume

Problem: nonuniqueness of the boundary conditions.
Margueron & Sandulescu, in ”Neutron Star Crust” (Nova Science Publisher, 2012).
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Pairing in the shallow layers of neutron-star crusts
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Superfluidity in the crust is very different from neutron matter:
reentrance phenomenon
existence of several critical temperatures.

These features cannot be explained by the simple BCS theory.



Superfluids are multi-fluid systems

Tisza and Landau showed that superfluid helium
cannot be described using the classical hydrodynamic
equations. Two distinct dynamical components coexist:

a superfluid,
a normal viscous fluid.

In neutron stars, electrically charged particles are locked together by
the magnetic field on very long timescales. Neutron stars contain (at
least!) two dynamical components:

a plasma of charged particles
a neutron superfluid.

Baym et al, Nature 224 (1969), 673.

Relativistic multifluid hydrodynamics is required for modelling
superfluid neutron stars.
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Mutual entrainment
In superfluid mixtures such as 3He-4He, the different superfluid
constituents may still be mutually entrained:

pXpXpX =
∑

Y

KXYvYvYvY ⇔ jXjXjX =
∑

Y

ρXYVYVYVY

pXpXpX is the momentum of the component X
vYvYvY is the velocity of the component Y
jXjXjX is the mass current of the component X

VYVYVY =
pYpYpY

mY
is the "superfluid velocity" of the component Y

KXY and ρXY are symmetric matrices, which depend on the
interactions between the constituent particles.
Andreev & Bashkin, Sov. Phys. JETP 42, 164 (1975).

Entrainment is nondissipative and is therefore different from drag
since superfluids have no viscosity !

Not all matrix elements are independent. Galilean invariance requires

mX =
∑

Y

KXY ⇔ ρX =
∑

Y

ρXY
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Mutual entrainment in 3He-4He mixtures at T = 0

Galilean invariance requires

m3 = K33 +K34 ,
m4 = K44 +K43 ,

and since K34 = K43, entrainment is determined by only one matrix
element.

Entrainment can be expressed in terms of "effective masses", but
different definitions are possible:

v3v3v3 = 0⇒ p4p4p4 = m?
4v4v4v4 with m?

4 = K44 and vice versa

p3p3p3 = 0⇒ p4p4p4 = m]
4v4v4v4 with m]

4 = K44 − K
43K34

K33 6= m?
4 and vice

versa.

Generalized equations of state are needed for modelling superfluid
neutron stars.
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How to obtain flow equations for (super)fluid mixtures?

Generalizing Tisza-Landau’s nonrelativistic two-fluid model of
superfluid helium to arbitrary relativistic superfluid mixtures is not
straightforward.

An elegant variational formalism was developed by
Brandon Carter using exterior calculus.
Carter in “Relativistic fluid dynamics” (Springer-Verlag, 1989), pp.1-64
Carter, Lect. Notes Phys. 578 (2001), Springer
Andersson&Comer, Living Rev. Relativity 10 (2007), 1.

This formalism relies on an action integral A =

∫
Λ{n µ

X
} dM(4) over

the 4-dimensional manifoldM(4) (Newtonian or Riemanian).

The Lagrangian density or master function Λ depends on the
4-current vectors n µ

X
= nXu µ

X
of the different fluids X.

For a short pedagogical introduction, see e.g.
Gourgoulhon, EAS Publications Series 21 (2006), 43.
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Variational formulation of superfluid hydrodynamics
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picture from Andersson&Comer

Using the action principle and
considering variations of the fluid
particle trajectories yield

n µ
X
$X
µν + πX

ν∇µn µ
X

= f X
ν

4-momentum covector πX
µ =

∂Λ

∂n µ
X

vorticity 2-form $X
µν = 2∇[µπ

X
ν] = ∇µπX

ν −∇νπX
µ

4-force density covector f X
ν

Remark: πX
µ and n µ

X
are mathematically different objects: the first is a

covector, while the second is a vector. This distinction is fundamental
in Newtonian spacetime (no metric).



Stress-energy density tensor and generalized
pressure

Using Noether identities leads to the stress-energy density tensor of
the superfluid mixture

Tµ
ν = Ψ δµν +

∑
X

n µ
X
πX
ν

where Ψ is a generalized pressure

Ψ = Λ−
∑

X

n µ
X
πX
µ.

In general, Ψ depends on the velocities of the fluids.

The above expressions are valid for any spacetime.



Example: cold relativistic superfluid
Let us consider a single relativistic superfluid at T = 0. The master
function is simply Λ = −ρc2, where ρ is the mass-energy density.

The 4-current is nµ = nuµ, where n is the particle number density and
uµ the 4-velocity, normalized as uµuµ = −c2.

The variation of the master function can be expressed as

δΛ = −µδn =
µ

c2 uνδnν

where µ is the chemical potential.
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Superfluidity vs perfect fluidity
In a rotating superfluid, the circulation

∮
πX
µdxµ = Nh is quantized

into N vortices. Let dυ be the intervortex spacing.

On a scale `� dυ: the superfluid is irrotational

$X
µν = 0⇒ πX

µ = ~∇µφX

where φX is the quantum phase of the (boson) condensate.
On a scale `� dυ: the superfluid rotates as a rigid body

vorticity is carried along uµυ

~uυL$X
µν = 0

⇒ uµυ$X
µν = 0
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Relativistic two-fluid models of neutron stars
The simplest model of cold superfluid neutron star cores contains two
components:

a “proton” fluid
a neutron superfluid.

The corresponding master function can be expressed as

Λ = −ρ(nn,np)c2 + λ1(nn,np)(x2 − nnnp) + λ2(nn,np)(x2 − nnnp)2 + · · ·

with x2c2 = −gµνn µn n νp , n2
nc2 = −gµνn µn n νn , n2

pc2 = −gµνn µp n νp .

The gravitational field is described by the Einstein-Hilbert Lagrangian

density ΛEH =
c4

16πG
R, where R is the Ricci scalar.

The microscopic physics is embedded in the usual equation of state
ρ(nn,np), and in the entrainment coefficients λ1(nn,np), λ2(nn,np) . . .

Microscopic calculations of λ1(nn,np):
(non)relativistic Fermi liquid theory,
(non)relativistic “mean field” theory.
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Relativistic models of superfluid neutron stars
The simple two-fluid model can be easily extended to account for the
neutron superfluid permeating the inner crust.
Carter, Chamel, Haensel, Int. J. Mod. Phys. D15, 777 (2006)

Despite the absence of viscous drag, the crust can still be entrained
by the superfluid due to Bragg scattering: λ1(nn,np), λ2(nn,np) . . . do
not vanish in the inner crust.
Chamel, PhD thesis, Université Paris 6, France (2004)
Carter, Chamel, Haensel, Nucl. Phys. A748, 675 (2005)

The presence of a magnetic field and elasticity can be also included:

non-relativistic formulation
Carter,Chachoua&Chamel, Gen.Rel.Grav.38,83(2006).
Carter & Chachoua, Int.J.Mod.Phys. D15, 1329 (2006).
Pethick, Chamel & Reddy, Prog. Theo. Phys. Sup. 186, 9 (2010).
Andersson, Haskell, Samuelsson, MNRAS416, 118 (2011).

relativistic formulation
Carter & Samuelsson, Class.Quant. Grav.23, 5367 (2006).
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Bragg scattering

For decades, neutron diffraction experiments
have been routinely performed to explore the
structure of materials.

The main difference in neutron-star crusts is
that neutrons are highly degenerate

A neutron with wavevector kkk can be
coherently scattered if d sin θ = Nπ/k ,
where N = 0,1,2, ... (Bragg’s law).

In this case, it does not propagate in the
crystal: it is therefore entrained!

Bragg scattering occurs if k > π/d . In neutron stars, neutrons have
momenta up to kF . Typically kF > π/d in all regions of the inner crust
but the shallowest.
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Neutron conduction: free neutrons
ground state

εkkk < µ

L1

L2

L3

L4

jnjnjn = 0

conducting state
εkkk < µ+ pnpnpn · ∇∇∇kkkεkkk

L1

L2

L3

L4

L5
L6

L7

jnjnjn = nf
n pnpnpn with pnpnpn = ~δkkk

Define an effective mass m?
n = mn

nf
n

nc
n

such that pnpnpn ≡ m?
nvnvnvn, where vnvnvn

is the average neutron velocity defined by jnjnjn = nf
n mnvnvnvn.

All free neutrons contribute to the current: m?
n = mn



Neutron conduction: neutrons in a periodic potential

ground state
εαkkk < µ

L1

L2

L3

jnjnjn = 0

conducting state
εαkkk < µ+ pnpnpn · ∇∇∇kkkεαkkk

L1

L2

L3

jnjnjn = nc
n pnpnpn

Only some “conduction” neutrons contribute to the current:

nc
n =

mn

24π3~2

∑
α

∫
F
|∇∇∇kkkεαkkk |dS(α) ≤ nf

n ⇒ m?
n ≥ mn



Neutron conduction: neutrons in a periodic potential

ground state
εαkkk < µ

L1

L2

L3

jnjnjn = 0

conducting state
εαkkk < µ+ pnpnpn · ∇∇∇kkkεαkkk

L1

L2

L3

jnjnjn = nc
n pnpnpn = 0 but pnpnpn 6= 0

If the Fermi level lies in a gap, no current can flow since there is no
available states! All neutrons are therefore entrained:

nc
n = 0⇔ m?

n → +∞



Neutron band structure: shallow region
Neutron band structure (s.p. energy in MeV vs kkk ) with (left) and
without (right) a bcc lattice of tin like clusters:

The band structure is similar to that of free neutrons: entrainment is
therefore expected to be weak.



Neutron band structure: intermediate region
Neutron band structure (s.p. energy in MeV vs kkk ) with (left) and
without (right) a bcc lattice of zirconium like clusters:

The band structure is very different from that of free neutrons:
entrainment is therefore expected to be strong.



How “free” are neutrons in neutron-star crusts?

Results of systematic band structure calculations in all regions of the
inner crust of a neutron star using accurately calibrated Skyrme
nuclear energy density functional BSk14:

n̄ (fm−3) nf
n/nn (%) nc

n/nf
n (%)

0.0003 20.0 82.6
0.001 68.6 27.3
0.005 86.4 17.5
0.01 88.9 15.5
0.02 90.3 7.37
0.03 91.4 7.33
0.04 88.8 10.6
0.05 91.4 30.0
0.06 91.5 45.9

n̄ is the average baryon density
nn is the total neutron density
nf

n is the “free” neutron density
nc

n is the “conduction” neutron density

In many layers, most neutrons are
entrained by the crust!
Chamel,PRC85,035801(2012)



Superfluid vortices

A rotating superfluid is threaded by
quantized vortex lines, each of which
carries an angular momentum ~. The
surface density of vortices is given by
nv (km−2) ∼ 1014/P(s).

Yarmchuk, Gordon, and Packard, PRL43, 214 (1979).

Likewise a type II superconductor is threaded by flux tubes.

In a neutron star, the surface density of (proton) flux tubes is
expected to be typically ∼ 1013 − 1014 times larger than that of
(neutron) vortices. But type I superconductivity is not excluded.
Sedrakian & Clark, in "Pairing in Fermionic Systems", (World Scientific, 2006)



Superfluid vortices in neutron star crust
Neutron superfluid vortices can pin to clusters.

single vortex
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Avogadro et al, Nucl.Phys.A811,378(2008).
Microscopic calculations of pinning forces:

local density approximation
semi-classical methods
self-consistent “mean-field” methods

The actual pinning of vortices depends also on the structure of the
crust, on the rigidity of the lines and on the vortex dynamics.
Bulgac, Forbes, Sharma, PRL110, 241102 (2013)



Superfluid vortices in neutron star core
Neutron superfluid vortices can also pin to flux tubes provided the
superconductor is of type II. The strong interaction between neutron
superfluid vortices and proton flux tubes in neutron star cores leads
to movement of crustal plates.

The evolution of the pulsar spin and magnetic field are intimately
related to superfluidity and superconductivity

Ruderman, Astrophys. Space Sci.357, 353 (2009)



Pulsar glitches
The strongest evidence for nuclear superfluidity come from pulsar
sudden spin-ups. Similar phenomena were observed in He II.

So far 470 glitches have been detected in 165 pulsars.
http://www.jb.man.ac.uk/pulsar/glitches/gTable.html

Vortex pinning by nuclei gives rise to crustal stress until:
vortices are suddenly unpinned (Anderson&Itoh)
the crust cracks (Ruderman).

Post-glitch relaxation arises from vortex creep.
Pines & Alpar, Nature 316, 27(1985)

http://www.jb.man.ac.uk/pulsar/glitches/gTable.html
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Entrainment and dissipation in neutron-star cores
Historically the long post-glitch relaxation provided the first
indications of neutron-star superfluidity. But...
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picture from K. Glampedakis

Due to (non-dissipative) mutual
entrainment effects, neutron vortices
carry a fractional magnetic quantum
flux
Sedrakyan & Shakhabasyan, Astrofizika 8
(1972), 557; Astrofizika 16 (1980), 727.

The core superfluid is strongly coupled to the crust due to
electrons scattering off the magnetic field of the vortex lines.
Alpar, Langer, Sauls, ApJ282 (1984) 533

Glitches are therefore expected to originate from the crust.
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Vela pulsar glitches and crustal entrainment

Vela pulsar glitches are usually interpreted as sudden tranfers of
angular momentum between the crustal superfluid and the rest
of star.

However this superfluid is also entrained ! Its angular momentum can
thus be written as

Js = IssΩs + (Is − Iss)Ωc

(Ωs and Ωc being the angular velocities of the superfluid and the
“crust”), leading to the following constraint:

(Is)2

IssI
≥ Ag

Ω

|Ω̇|
, Ag =

1
t

∑
i

∆Ωi

Ω

Chamel&Carter,MNRAS368,796(2006)
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Pulsar glitch constraint

Since 1969, 17 glitches have been
regularly detected. The latest one
occurred in August 2010.

Cumulated glitch amplitude
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Vela pulsar glitches A linear fit of
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vs t yields

Ag ' 2.25× 10−14 s−1
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Moments of inertia
The ratio (Is)2/IssI depends on the internal structure of the star:

(Is)2

IIss
=

Icrust

Iss

(
Is

Icrust

)2 Icrust

I
.

Iss/Icrust and Is/Icrust depend only on the crust physics:

Iss

Icrust
≈ 1

Pcc

∫ Pcc

Pdrip

nf
n(P)2

n̄(P)nc
n(P)

dP ,
Is

Icrust
≈ 1

Pcore

∫ Pcc

Pdrip

nf
n(P)

n̄(P)
dP .

Using our crust model, we find Iss ' 4.6Icrust and Is ' 0.89Icrust leading
to (Is)2/Iss ' 0.17Icrust.

The ratio Icrust/I depends on the global structure of the star (M, R)
and the crust-core transition (ncc , Pcc).

The pulsar glitch constraint thus becomes
Icrust

I
≥ 9.4%.

Chamel, PRL 110, 011101 (2013).
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∫ Pcc

Pdrip

nf
n(P)

n̄(P)
dP .

Using our crust model, we find Iss ' 4.6Icrust and Is ' 0.89Icrust leading
to (Is)2/Iss ' 0.17Icrust.

The ratio Icrust/I depends on the global structure of the star (M, R)
and the crust-core transition (ncc , Pcc).

The pulsar glitch constraint thus becomes
Icrust

I
≥ 9.4%.

Chamel, PRL 110, 011101 (2013).



Pulsar glitch constraint
Shaded areas are excluded if Vela pulsar glitches originate in the
crust (Lattimer&Prakash interpolation formula was used):

The inferred mass of Vela is unrealistically low M < M�.

The crust does not carry enough angular momentum.
Andersson et al.PRL 109, 241103; Chamel, PRL 110, 011101.

Core-induced glitches (pinning to flux tubes)?
Gügercinoğlu & Alpar, ApJ 788, L11 (2014).



Puzzling glitches
The glitch theory has been challenged by other observations:

a huge glitch in PSR 2334+61
Alpar, AIP Conf.Proc.1379,166(2011)

unusual post-glitch relaxation in PSR J1119−6127
Weltevrede et al., MNRAS 411,1917(2011)

a huge glitch in PSR J1718−3718
Manchester & Hobbs, ApJ 736,L31(2011)

an anti-glitch in 1E 2259+586
Archibald et al.,Nature 497,591 (2013).

Several physical aspects are not well-understood:

type of superconductivity
vortex pinning
superfluid turbulence
entrainment
crust-core coupling.

Haskell&Melatos, Int. J. Mod. Phys. D 24, 1530008 (2015).
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Cooling of isolated neutron stars

During the first tens of seconds, the newly formed proto-neutron star
with a radius of ∼ 50 km stays very hot with T ∼ 1011 − 1012 K.
Within ∼ 10− 20 s the proto-neutron star becomes transparent to
neutrinos and thus rapidly cools down by powerful neutrino
emission shrinking into an ordinary neutron star.

Puppis A (RX J0822-4300) from Chandra

After about 104 − 105

years, the cooling is
governed by the emission
of thermal photons due to
the diffusion of heat from
the interior to the surface.



Thermal X-ray emission of neutron stars

The thermal X-ray emission of young neutron stars is usually
hindered by the magnetospheric component.
For old pulsars, the thermal radiation dominate but is too low to
be detectable (except for hot polar caps).

Picture from Zavlin



Thermal X-ray emission of neutron stars

The best targets are isolated mature neutron stars with no
magnetospheric activity: Compact Central Objects (CCOs), Dim
Isolated Neutron Stars (DINS).
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Page and Reddy, Ann.Rev.Nucl.Part.Sys. 56 (2006), 327.
http://www.astroscu.unam.mx/neutrones/home.html

http://www.astroscu.unam.mx/neutrones/home.html


Cooling of neutron stars
Theoretical cooling simulations yield the surface temperature vs age.
The curve depends on neutron star mass, radius, composition,
presence of magnetic field and superfluidity.

exotica

Yakovlev et al, proceedings (2007), arXiv:0710.2047

The thermal X-ray emission provides evidence for superfluidity in
neutron stars but it is hard to conclude about the internal composition
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Cooling of Cassiopeia A

The recent monitoring of the fast cooling of the young neutron star in
Cassiopeia A provides strong evidence for neutron-star core
superfluidity.
Page et al., PRL 106, 081101; Shternin et al.,MNRAS 412, L108.

C
T  = 10  K

T  = 0CC
T  = 5.5x10  K

8

9

Superfluidity reduces the heat capacity and neutrino emissivities but
also opens new channels of neutrino emission.



Cooling of Cassiopeia A

However, a more recent analysis of
observational data from all detectors
suggests that the cooling rate might be
slower.

Elshamouty et al., ApJ 777, 22 (2013).

Moreover, alternative scenarios have been proposed.
Blaschke, Grigorian, Voskresensky, PRC88, 065805 (2013)
Bonanno, Baldo, Burgio, Urpin, A&A 561, L5 (2014)
Negreiros, Schramm, Weber, Phys. Lett. B718, 1176 (2013)
Sedrakian, A& A 555, L10 (2013)

Still, most scenarios require superfluidity and/or superconductivity in
neutron stars.
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Neutron star formation and cooling
Due to its relatively low neutrino emissivity, the crust of a newly-born
neutron star cools less rapidly than the core and thus stays hotter.

The thermal relaxation time depends on the crust physics:

tW ' (∆R)2
[
1− 2GM

R

]−3/2 Ctot

κ
Ctot is the total heat capacity
κ is the thermal conductivity
Gnedin et al., MNRAS 324, 725 (2001).

Neutron pairing suppresses the
neutron heat capacity thus
reducing tW
Fortin et al., PRC 82, 065804 (2010)

But so far no such young neutron
stars have been observed; they
are probably hidden by the
expanding supernova envelopes. 0 10 20 30 40
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X-ray binaries
Neutron stars in X-ray binaries may be heated as a result of the
accretion of matter from the companion star (see Pawel Haensel’s
lecture).

The accretion of matter onto the surface
of the neutron star triggers thermonuclear
fusion reactions which can become
explosive, giving rise to X-ray bursts.

In quasipersistent soft X-ray transients (SXT), accretion outbursts are
followed by long period of quiescence during which the accretion
rate is much lower. In some cases, the period of accretion can last
long enough for the crust to be heated out of equilibrium with the
core.



Thermal relaxation of soft x-ray transients
The thermal relaxation during the quiescent state has been recently
monitored for a few accreting neutron stars.
D. Page & S. Reddy in "Neutron Star Crust", edited by C. A. Bertulani and J.
Piekarewicz, Nova Science Publishers, Inc. (New York, 2012), pp.281-308

Example: KS 1731−260

Curves 1,3,4 : crystalline crust with
neutron superfluidity
Curve 2 : crystalline crust without neutron
superfluidity
Curve 5 : amorphous crust with neutron
superfluidity

Shternin et al., Mon. Not. R. Astron. Soc.382(2007), L43.
Brown and Cumming, ApJ698 (2009), 1020.

Observations of SXT provide evidence of superfluidity in the inner
crust of a neutron star. But there are also puzzles (see Pawel
Haensel’s lecture).
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Neutron star precession

Long-term cyclical variations of order months to years have been
reported in a few neutron stars: Her X-1 (accreting neutron star), the
Crab pulsar, PSR 1828−11, PSR B1642−03, PSR B0959−54 and
RX J0720.4−3125.

Example: Time of arrival residuals,
period residuals, and shape
parameter for PSR 1828−11
Stairs et al., Nature 406(2000),484.
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These variations have been interpreted as the signature of neutron
star precession.



Precession and superfluidity
For a non-superfluid star with
deformation ε = ∆I/I,

Pprec =
P
ε
� P

For a superfluid star with pinned
vortices
Pprec =

Ipin

I
P � P

Link, Astrophys. Space Sci.308,435 (2007)

Observations of precession could thus shed light on superfluidity. On
the other hand, precession may trigger instabilities that could unpin
vortices.
Glampedakis,Andersson,Jones,PRL100,081101(2008).
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Asteroseismology of neutron stars
The presence of superfluids and superconductors in neutron stars
leads to the existence of new oscillations modes.

In the simplest two-fluid model, there exists two families of modes:
"normal" modes (comoving fluids)
"superfluid" modes (countermoving fluids)

Quasiperiodic oscillations (QPOs) have
been detected in the X-ray flux of giant
flares from a few soft gamma-ray
repeaters.

Example: SGR 1806−20
Strohmayer&Watts, ApJ653,593 (2006)

These QPOs are thought to be the signatures of superfluid
magneto-elastic oscillations.
Gabler al., PRL 111, 211102 (2013).
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Summary
Nuclear superfluidity in neutron stars was predicted long before the
discovery of pulsars, but many aspects still remain not very well
understood (e.g. pairing phases, Tc , hydrodynamics).

What we know with confidence:

Fortunately, superfluidity leaves its imprint on various astrophysical
phenomena (e.g. glitches, cooling, oscillations etc).
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