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Why studying neutron star crust ?

Crust=interface between outer layers (observations) and core

⇒ Important role in the dynamics of the star :

F electrical resistivity⇒ evolution of magnetic field (pulsar
emission, magnetars)

F thermal conductivity⇒ X ray emission, cooling

F elastic properties⇒ pulsar glitches, oscillation modes,
gravitational waves

F equation of state⇒ binary merger
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Neutron star crust as a probe for exotic nuclei

Exotic phases inaccessible on Earth !

F Very neutron rich nuclei

F Strongly deformed nuclei (“pasta” phases)

F Nuclei immersed in a neutron superfluid

⇒ nuclear astrophysical laboratory !

LATEX – p.5



Neutron star crust as a probe for exotic nuclei

Exotic phases inaccessible on Earth !

F Very neutron rich nuclei

F Strongly deformed nuclei (“pasta” phases)

F Nuclei immersed in a neutron superfluid

⇒ nuclear astrophysical laboratory !

LATEX – p.5



Neutron star crust as a probe for exotic nuclei

Exotic phases inaccessible on Earth !

F Very neutron rich nuclei

F Strongly deformed nuclei (“pasta” phases)

F Nuclei immersed in a neutron superfluid

⇒ nuclear astrophysical laboratory !

LATEX – p.5



Neutron star crust as a probe for exotic nuclei

Exotic phases inaccessible on Earth !

F Very neutron rich nuclei

F Strongly deformed nuclei (“pasta” phases)

F Nuclei immersed in a neutron superfluid

⇒ nuclear astrophysical laboratory !

LATEX – p.5



Neutron star crust as a probe for exotic nuclei

Exotic phases inaccessible on Earth !

F Very neutron rich nuclei

F Strongly deformed nuclei (“pasta” phases)

F Nuclei immersed in a neutron superfluid

⇒ nuclear astrophysical laboratory !

LATEX – p.5



Neutron star crust as a probe for exotic nuclei

Exotic phases inaccessible on Earth !

F Very neutron rich nuclei

F Strongly deformed nuclei (“pasta” phases)

F Nuclei immersed in a neutron superfluid

⇒ nuclear astrophysical laboratory !

LATEX – p.5



Structure of the crust
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Electron properties

At densities ρ & 106 g.cm−3

F λe <
~
mec
⇒ relativistic

F Γ = e2

aEcin
∼ e2

~c ∼ 1
137 � 1, a =

(
3

4πne

)1/3

⇒ uniform

(in ordinary metals Γ = 0.543rs ∼ 1)

rs ≡ a/a0, a0 = ~2/mee
2

in metals rs ∼ 2− 6
in NS crust rs ∼ 10−5 − 10−2

Ceperley et al., PRL 45 (1980) 566-
569.
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Ground state of matter below neutron drip

F Cold catalyzed matter hypothesis, Harrison et al. (1965)

F Perfect crystal with a single nuclear species at lattice sites

⇒ minimising the energy per nucleon ε/nb

ε = nNE{A,Z}+ εe + εL

Wigner-Seitz
approximation

Each sphere is electrically neutral
⇒ εL = εee + εeN
assuming uniform electron sea

⇒ εL = − 9
10
Z2e2

Rcell
nN

(
1− 5

9
<r2>
R2

cell

)
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Composition of the outer crust (T=0)

The structure of the outer crust up to ρ ∼ 1011 g.cm−3 is
completely determined by the measured masses of neutron rich
nuclei, Haensel & Pichon Astron. & Astrophys. 283 (1994) 313.

⇒ very low proton fraction due to inverse β decay
⇒ strong shell effects with magic numbers 28, 50, 82

LATEX – p.9



Composition of the outer crust (T=0)

The structure of the outer crust up to ρ ∼ 1011 g.cm−3 is
completely determined by the measured masses of neutron rich
nuclei, Haensel & Pichon Astron. & Astrophys. 283 (1994) 313.

⇒ very low proton fraction due to inverse β decay

⇒ strong shell effects with magic numbers 28, 50, 82

LATEX – p.9



Composition of the outer crust (T=0)

The structure of the outer crust up to ρ ∼ 1011 g.cm−3 is
completely determined by the measured masses of neutron rich
nuclei, Haensel & Pichon Astron. & Astrophys. 283 (1994) 313.

⇒ very low proton fraction due to inverse β decay
⇒ strong shell effects with magic numbers 28, 50, 82

LATEX – p.9



Calculations beyond neutron drip

F Beyond ρ ' 4× 1011 g.cm−3, nuclei are immersed in a
neutron sea
⇒ E{A,Z} must be extrapolated

F Due to inhomogeneities, calculations from bare
nucleon-nucleon interactions are not feasible
⇒ effective phenomenological interactions/models

From a given “microscopic” Hamiltonian :

F Semiclassical calculations

F Quantum calculations
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Hierarchy of approximations

F Compressible liquid drop model

? nuclei have sharp cut surface

? nuclear matter inside and outside nuclei is homogeneous

? provides useful insight by separating contributions to the
energy density

F (Extended) Thomas-Fermi

? smooth density profiles (nuclei have smooth surface)

? nuclear matter is locally homogeneous

? consistent treatment of nucleons inside and outside nuclei

F Hartree-Fock (Negele& Vautherin)

? independent particles⇒ shell effects

F Hartree-Fock-Bogoliubov

? independent quasiparticles⇒ pairing effects
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Ground state of matter above neutron drip

Compressible liquid drop model
(+W-S approximation)
ε = εN,bulk + εN,surf + εC + εe

εN,bulk = uW{nn,i, np,i}+ (1− u)W{nn,o, 0}
u = (Rp/Rcell)

3

W{nn, np} energy density of homogeneous nuclear matter
εN,surf = (Aσ +Nsµn,s)/Vcell

εC = εN,C + εL = 4π
5 (np,ie)

2uRp
2

(
1− 3

2u
1/3 + 1

2u

)

Effects of the ambient neutron gas :

F reduction of the surface tension

F compression of the nuclei

LATEX – p.12
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Ground state of matter above neutron drip

Compressible liquid drop model
(+W-S approximation)
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Nuclear surface properties

Consider a 2 phase nucleon system in thermodynamical
equilibrium at T = 0 separated by a plane interface at z = zref .

Surface tension defined by
σs =

∫ +∞
−∞ (ε{z} − εbulk,zref

{z})dz − µn

∫ +∞
−∞ (nn{z} −

nn,zref
{z})dz − µp

∫ +∞
−∞ (np{z} − np,zref

{z})dz

εbulk,zref
{z} = εi θ{zref − z}+ εo θ{z − zref}

nq,zref
{z} = nq,i θ{zref − z}+ nq,o θ{z − zref}
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Surface tension

Douchin et al., Nucl. Phys. A 665 (2000) 419-446.
ε calculated from Skyrme energy density functional within ETF
approximation
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Virial theorem

Baym et al., Nucl. Phys. A175 (1971) 225.

F neglecting curvature correction to the surface energy

F neglecting finite size effects to the Coulomb energy

⇒ At equilibrium εN,surf = 2εC

⇒ The lattice energy plays a crucial role for determining the
composition and the shape of nuclei !

εL ∼ 15% of the total Coulomb energy at ρ ∼ 1011 g.cm−3
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Equilibrium conditions

F Mechanical equilibrium⇒ generalised Laplace’s formula

P bulk
i − P bulk

o = 2σs
Rp
− 4π

15 e
2n2

p,iRp
2(1− u)

F Chemical equilibrium

µbulk
n,i = µbulk

p,o = µbulk
n,s

µbulk
n,i − µbulk

p,i − µe = 8π
5 e

2np,iRp
2

(
1− 3

2u
1/3 + 1

2u

)
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Structure of the inner crust within the CLDM

Douchin & Haensel, Phys. Lett. B 484 (2000) 107.

⇒ Z nearly constant throughout the crust
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Pasta phases

Ravenhall et al. PRL50 (1983), 2066.
At high densities, surface energy can be reduced by deforming
and joining nuclei !

Bohr-Wheeler fission condition for isola-
ted nuclei (valid for the crust to order u) :

εN,C > 2εN,surf

virial theorem εN,surf ' 2εN,C

(
1− 3

2u
1/3

)

u > 1/8⇒ non spherical nuclei in a neutron sea
u > 1/2⇒ neutron bubbles in nuclear matter, BBP (1971)

Pasta phases have important consequences for

F elastic properties (liquid crystals)
Pethick et al., Phys. Lett. B 427 (1998) 7.

F cooling (possiblity of direct URCA processes)
Gusakov et al., Astron. & Astrophys. 421 (2004), 1143.
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From liquid drop models to quantum calculations

Boundary conditions for quantum calculations ?

Idea : instead of considering the whole lattice, focus on one
nucleus

⇒ “Wigner-Seitz approximation”

one nucleus in a sphere + arbitrary
boundary conditions
⇒ 1D problem

LATEX – p.19



From liquid drop models to quantum calculations

Boundary conditions for quantum calculations ?
Idea : instead of considering the whole lattice, focus on one
nucleus

⇒ “Wigner-Seitz approximation”

one nucleus in a sphere + arbitrary
boundary conditions
⇒ 1D problem

LATEX – p.19



From liquid drop models to quantum calculations

Boundary conditions for quantum calculations ?
Idea : instead of considering the whole lattice, focus on one
nucleus

⇒ “Wigner-Seitz approximation”

one nucleus in a sphere + arbitrary
boundary conditions
⇒ 1D problem

LATEX – p.19



From liquid drop models to quantum calculations

Boundary conditions for quantum calculations ?
Idea : instead of considering the whole lattice, focus on one
nucleus

⇒ “Wigner-Seitz approximation”

one nucleus in a sphere + arbitrary
boundary conditions
⇒ 1D problem

LATEX – p.19



From liquid drop models to quantum calculations

Boundary conditions for quantum calculations ?
Idea : instead of considering the whole lattice, focus on one
nucleus

⇒ “Wigner-Seitz approximation”

one nucleus in a sphere + arbitrary
boundary conditions
⇒ 1D problem

LATEX – p.19



From liquid drop models to quantum calculations

Boundary conditions for quantum calculations ?
Idea : instead of considering the whole lattice, focus on one
nucleus

⇒ “Wigner-Seitz approximation”

one nucleus in a sphere + arbitrary
boundary conditions

⇒ 1D problem

LATEX – p.19



From liquid drop models to quantum calculations

Boundary conditions for quantum calculations ?
Idea : instead of considering the whole lattice, focus on one
nucleus

⇒ “Wigner-Seitz approximation”

one nucleus in a sphere + arbitrary
boundary conditions
⇒ 1D problem

LATEX – p.19



Negele & Vautherin paper

Negele & Vautherin, Nucl. Phys. A207 (1973)
298.

Density matrix expansion (no pairing correlations)
⇒ Skyrme like energy density functional ε{nq{r}, τq{r}},
q = n, p

⇒
(
−∇ · ~2

2m⊕q {r}
∇+ Uq{r} − iWq{r} · ∇ × σ − E

)
ϕ(q){r} = 0

Boundary conditions :

F wave functions with even l vanish and the radial derivative of
those with odd l vanish on the W-S sphere

F averaging of the densities at the cell edge.
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Equilibrium structure of the inner crust (T=0)

Spin-orbit coupling terms for neutrons are neglected. Electrons
are treated as a uniform relativistic gas.

⇒ strong proton shell effects at Z=40 (Zr) and Z=50 (Sn)
⇒ unlike lattice spacing, the nuclear size is almost constant
throughout the crust
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Superfluidity

F Theory

? Superfluidity predicted by Migdal in 1959 before the
discovery of pulsars

? Cooper pairing in the 1S0 channel like in conventional
superconductors

? BCS regime regime ξ > nn
−1/3 (no transition to BEC)

F Observations

? Evidence of superfluidity from long relaxation times after
pulsar glitches

? Superfluidity involved in some mechanism of glitches
(vortex pinning)

? Superfluidity in the crust affects the cooling time
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Superfluidity in low density pure neutron matter

Baldo et al., NPA 749 (2005) 42c.

⇒ Pairing gap ∆ ∼ MeV
⇒ critical temperature Tcn ∼ ∆/kB and density range of
superfluidity depend on medium effects
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Superfluidity in neutron star crust matter

Sandulescu et al., Phys. Rev. C 69 (2004), 045802.

F Mean field approximation : independent pairs of correlated
nucleons
⇒ Hartree-Fock Bogoliubov equations

(H{r} − µ
∆∗{r}

∆{r}
−H∗{r}+ µ

)(
u{r}
v{r}

)
= E

(
u{r}
v{r}

)

with Skyrme (SLy4) nucleon-nucleon interactions and with
two sets of pairing force (weak/strong)

V {r− r′} = V0

(
1− η

(n{r}
n0

)γ
)
δ{r− r′}

F + W-S approximation with N&V boundary conditions

F Rcell, N and Z taken from N&V
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Pairing field

⇒ The pairing field varies smoothly between the nuclei and the
neutron gas : proximity effect
Barranco et al., Phys. Rev. C 58 (1998), 1257.
⇒ At high density, the pairing field is suppressed inside nuclei
while at low density it is enhanced at the surface
⇒ The pairing field is very sensitive to the pairing force
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Superfluidity and cooling

Pizzochero et al., Astrophys.. J. 569 (2002), 381.
HFB calculations with a fixed Woods-Saxon mean field
parametrised from the results of N & V.

⇒ the specific heat is significantly increased at low density due
to the suppression of the pairing field inside nuclei
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Observational constraints on the crust

Lattimer et al., Astrophys.. J. 425 (1994), 802.

⇒ t
W

is related to the diffusion of heat in the crust
⇒ Measures of t

W
from observations can constrain models of

neutron star crust
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Effects of pairing on the structure of the crust ?

Baldo et al., Nucl. Phys. A 750 (2005) 409.
Ground state of the crust in the regions of maximal neutron
pairing (ρ ' 1.9× 1013 g.cm−3) ?

Generalised density functional theory including pairing
correlations (in BCS approximation) :

ε{nq{r}, νq{r}} =

εcluster{nq{r}, νq{r}}F{r}+ εgas{nq{r}, νq{r}}(1−F{r})

F εcluster phenomenological Fayan’s functional

F εgas LDA of a microscopic pure neutron matter EOS

F{r} =

(
1 + exp{(r −Rm)/dm}

)−1

, np{Rm} = 0.1np{0}
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Effects of pairing on the structure of the crust ?

Baldo et al., Nucl. Phys. A 750 (2005) 409.
Ground state of the crust in the regions of maximal neutron
pairing (ρ ' 1.9× 1013 g.cm−3) ?

Generalised density functional theory including pairing
correlations (in BCS approximation) :

⇒
(H{r} − µ

∆∗{r}
∆{r}

−H∗{r}+ µ

)(
u{r}
v{r}

)
= E

(
u{r}
v{r}

)

H{r} = −~2/2mq + Uq{r}, Uq = δε/δnq, ∆ = δε/δνq

nq{r} = 2
∑

α

|vα{r}|2 νq{r} =
∑

α

uα{r}v∗α{r}

+W-S approximation
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Effects of pairing on the structure of the crust ?

Equilibrium structure of the crust ?

Fayan’s functional only

F with pairing Z = 71 and Rcell = 31 fm

F without pairing Z = 40 and Rcell = 25 fm

Generalised functional

F with pairing Z = 52 and Rcell = 32 fm

F without pairing Z = 44 and Rcell = 29.5 fm

⇒ the shell effects are washed out by pairing : no magic number
⇒ the binding energy per nucleon vs Z has a very flat minimum
: probably several nuclear species A,Z coexist at a given

density
⇒ the composition of the nuclei is strongly affected
⇒ but results are very sensitive to the energy functional !
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Necessity to go beyond the W-S approximation

F Unphysical Friedel oscillations⇒ spurious shell effects

⇒ Some averaging of the density at the cell edge is usually
imposed to remove these spurious fluctuations
⇒ equilibrium structure calculations are contaminated by
spurious shell effets !

F Nuclei treated as if isolated
valid approximation in the outer crust but not in the inner
layers !
⇒ clearly inadequate to study transport properties

Beyond the W-S approximation ?
Magierski & Heenen, [Phys.Rev. C65 (2002) 045804] : HF
(SLy4) +periodic boundary conditions in a cube ⇒ why such a
choice ?

necessity for reconsidering boundary conditions more
rigorously !
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⇒ spurious fluctuations in the density !
Montani et al., Phys.Rev. C69 (2004) 065801
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Neutron star crust as “neutronic” crystals

Neutron star crust matter=free neutrons in a periodic medium.

⇒ close analogy with condensed matter systems :

F electronic crystals

F photonic crystals

F phononic crystals

⇒ “neutronic” crystals

Go beyond the W-S approximation by including Bragg scattering
of dripped neutrons by crustal nuclei
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From solid state to nuclear physics

Analogy between dripped neutrons in NS crust and conduction
electrons in solids

⇒ Apply band theory in neutron star crust !

Main assumptions

F adiabatic approximation (Born-Oppenheimer)
mn � mN ⇒ fixed nuclei

F ideal crystal : periodic lattice of nuclei

F independent particle approximation
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From solid state to nuclear physics

Analogy between dripped neutrons in NS crust and conduction
electrons in solids⇒ Apply band theory in neutron star crust !

Main assumptions

F adiabatic approximation (Born-Oppenheimer)

Douchin & Haensel, Phys.Lett. B485 (2000) 107

mn � mN ⇒ fixed nuclei

F ideal crystal : periodic lattice of nuclei
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Floquet (1883)-Bloch(1928) theorem

Single particle states in a periodic medium ?

ϕk{r} = ei k·rψk{r} ψk{r + T} = ψk{r}

For each k, there exists discret energy levels⇒ energy bands
Eα{k}
F α→ rotational symmetry of nuclei

F k→ translational symmetry of crystal

⇒ local and global symmetries are both included !
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Symmetries

By symmetry one can consider only one nucleus in a cell .

F The shape of the cell is fixed by symmetry
Example : body centered cubic lattice

F The boundary conditions are not arbitrary but fixed by
Floquet-Bloch theorem

ϕk{r + T} = ei k·Tϕk{r}

Prescription of Magierski et al ⇒ only k = 0 solutions
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Back to the W-S approximation

E. P. Wigner & F. Seitz, Phys. Rev.
43 (1933), 804.

Chemical properties of metallic sodium (one valence electron) ?

ϕk{r} ' ϕ0{r}ei k·r

« It will be quite a good approximation to replace the polyhedron
by a sphere of equal volume, and to take as boundary conditions
that the derivative of the wave function vanishes at the boundary
of this sphere. »
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Single particle energy spectrum

Energy bands possess a lattice symetry

F Invariance under some lattice translations

Eα{k + K} = Eα{k}

The W-S cell of the reciprocal lattice=first Brillouin Zone

F Invariance under rotations of the reciprocal lattice

Eα{Rk} = Eα{k}

⇒ energy spectrum is contained within IBZ

Example : bcc lattice
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F Invariance under some lattice translations
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The W-S cell of the reciprocal lattice=first Brillouin Zone
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Ground state (T=0)

Lowest energy state for a given density nn ?

F Aufbau principle : filling of the lowest single particle energy
states up to the Fermi level µ

nn =
∑

α

∫

BZ

d3k

(2π)3
θ{µ− Eα}

F Fermi surface S
F

=

{
k, α| Eα{k} = µ

}
, V

F
= (2π)3nn

In the empty lattice (uniform) limit , the Fermi surface is a sphere
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Example of Fermi surfaces

Examples in solid state physics : Sodium (bcc), Copper (fcc) and
Cobalt (hcp)

http ://www.phys.ufl.edu/fermisurface/

Landau-Luttinger theorem : V
F

= (2π)3nn

J. M. Luttinger, Phys. Rev. 119 (1960), 1153.

LATEX – p.40



Neutron density and symmetries

nn{r} =
1

(2π)3

∑

α

∫

F
d3k |ϕαk{r}|2

Bloch theorem ensures that the density possesses the full
crystal symmetry

F At the cell edge ∇nn{r} ∈ cell face by symmetry

F Inside nuclei ∇nn{T} = 0 whenever crystal is invariant
under space inversion

⇒ no spurious density fluctuations
⇒ no need for ad hoc prescriptions !
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Neutron star crust in the neutron drip region

Hartree-Fock calculation with Skyrme (SLy4) effective
nucleon-nucleon interactions

−∇· ~2

2mn⊕{r}
∇ϕk{r}+Un{r}ϕk{r}−iWn{r}·∇×σϕk{r} = Eϕk{r}

+Bloch boundary conditions
ϕk{r+T} = ei k·Tϕk{r}

Equilibrium lattice spacing and nuclear composition taken from
Negele & Vautherin (1973)

F Body centered cubic lattice

F W-S sphere radius Rcell ' 54.1 fm

F nn{r} and np{r} from N&V + ETF⇒ mn
⊕{r}, Un{r} and

Wn{r}
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Linearised Augmented Plane Wave method

Variational method : ϕk{r} =
∑

α cαφα{r}
F Inside the Slater sphere (I)

φα{r} =

+∞∑

l=0

l∑

m=−l

(
Almul{El, r}+Blmu̇l{El, r}

)
Ylm{r̂}

F In the intersticial region (II)

φα{r} =
1√Vcell

ei qα·r

qα = k + Kα are chosen so as to satisfy Bloch boundary
conditions .

Alm and Blm are fixed by matching φ and ∇φ on the sphere.
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Neutron band structure

Band structure, W-S approximation with Negele & Vautherin
boundary conditions, Fermi gas
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⇒ Despite strong nuclear potential, energy spectrum is very
close to that of ideal Fermi gas except for avoided crossings
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PK cancellation theorem

Phillips & Kleinman theorem, Phys. Rev. 116 (1959) 287.

Equation for the unbound states ?
Given any basis set φα, orthogonalise to core states

|φ̃α〉 = |φα〉 −
∑

c

|ϕc〉〈ϕc|φα〉

⇒ non local, energy dependent potential !

VRϕ{r} =

∫
d3r′VR{r, r′}ϕ{r′} VR{r, r′} ≡

∑

c

(E−Ec)ϕ∗c{r′}ϕc{r}

F outside nuclei ϕc{r} ' 0⇒ VR vanishes

F VR is repulsive for unbound states E > Ec

⇒ dripped neutrons in the bulk behave as nearly free particles !
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Band gaps and “neutronics”

Lattice spacing, nuclear composition and density of dripped
neutrons vary with depth

⇒ neutron band structure has to be calculated for each layer of
the crust

Does there exist a neutronic band
gap in some layers of the inner
crust ?
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Band gaps and “neutronics”

F gaps exist in any 1D periodic medium
Rayleigh, Phil. Mag. 24 (1887), 145.

F no trivial answers for higher dimensions
⇒ numerical calculations

Signatures of band gaps in the single particle density of states

N{E} =
dn

dE =
∑

α

∫

BZ

d3k

(2π)3
δ{E − Eα{k}}
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Fermi surface integrations

How to evaluate
∫
f{k}dS

F
?

Gilat-Raubenheimer scheme :

F the BZ is partitioned into small cells

F within each cell the Fermi surface is approximated by a plane

The single particle energy is extrapolated from the center of
the cell

E{k} ' E{kc}+ (k− kc) · ∇kE{kc}

F f is supposed to be constant in each cell

⇒
∫
f{k}dS

F
'
∑

c

wcf{kc}Sc

Sc can be calculated analytically

LATEX – p.48
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Density of states and band gaps

band theory

ideal Fermi gas
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Neutron current

Neutron current in the crust frame ?

ni =
∑

α

∫
viαk

d3k

(2π)3
, viαk =

1

~
∂Eα
∂ki

Lowest energy state for given density nn and current ni ?
⇒ uniform displacement of the Fermi surface

Eα = µ+ piv
i
αk , pi = ~δki

LATEX – p.50
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Neutron transport properties

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Linear response to finite neutron current ?

⇒ mobility tensor

ni = Kijpj , Kij =
1

(2π)3

∑

α

∫

BZ

viαkv
j
αk δ{Eαk − µ} d3k

For cubic crystals Kij = Kγij

K =
1

3

1

(2π)3~
∑

α

∫
vαdS(α)

F

Setting ni = nfv
i where nf is the density of conduction

neutrons with mean velocity vi ⇒ pi = m?vi
with effective neutron mass m? = nf/K
⇒ Neutron transport properties are determined by the shape of
the Fermi surface

LATEX – p.51
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Two fluid model

Carter, Chamel & Haensel, astro-ph/0408083.
At macroscopic scales� lattice spacing

Describe the crust as a 2 fluid mixture : plasma of charged
particles + neutron gas coupled by entrainment
Uint = Uint{nc, nf , vc − vf}
⇒ momenta and velocities are not aligned

pf = mvn +mεf(vc − vf)

pc = mvc −mεc(vc − vf)

εf ≡
m−m?

m
, εc =

nf

nc
εf

⇒ m? is an important parameter for hydrodynamical simulations
Ex : If m? is sufficiently large⇒ superfluid two-stream instability
Andersson et al, MNRAS 354 (2004) 101
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Homogeneous nuclear matter

Equations are exactely solvable ⇒ Fermi surface is a sphere
of radius k

F
= (3π2nn)1/3.

Effective mass ?
All states are conduction states⇒ nf = nn

m? = ~2k
F

(
dE
dk

∣∣∣∣
k=k

F

)−1

= mn
⊕

Typically m? < mn (SLy4)
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Neutron star crust matter

Different length scales !

F Microscopic scales < nuclear size ⇒ m⊕ < mn

F Macroscopic scales� lattice spacing ⇒ m? = nf/K > mn

conduction states are such that Eα{k} > max{Un}
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Metal or insulator ?

If conduction or dripped neutrons of density nf are

F free⇒ K = nf/mn (m? = mn)

F bound⇒ K = 0 (m? → +∞)
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Bragg scattering and Fermi surface topology

Neutron star crust matter has a lower symmetry than
homogeneous nuclear matter

⇒ avoided crossings

⇒ holes on the Fermi surface !
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Fermi surface area
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Fermi surface and effective mass

Effects of Bragg scattering ?

F around avoided crossings

v =
1

~
∇kE ∼ 0

F Fermi surface is reduced

⇒ m? = nf/K > mn since K ∝
∫
v dS

F

Effective mass is a probe of the topology of the Fermi surface
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Deep layers of the inner crust

T-F calculation of Oyamatsu, Nucl. Phys. A561(1993) 431.

F Spherical nuclei for nb < 0.06 fm−3

F Pasta layers for 0.06 < nb < 0.09 fm−3 : spaghetti, lasagna,
tubes and bubbles.

LATEX – p.59
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Deep layers of the inner crust

Thomas-Fermi calculation of Oyamatsu, Nucl. Phys. A561(1993)
431.
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Deep layers of the inner crust

DFT calculations with the functional of Oyamatsu & Yamada,
[Nucl. Phys. A578 (1994) 181] adjusted on the EOS of
Friedman-Pandharipande (1981)

[
− ~2

2mn
∇2 + Un{r}

]
ϕk{r} = Eϕk{r}

+ Bloch boundary conditions

Equations are solved on a plane wave basis set

ϕk{r} =
∑

α

cαe
i (k+Kα)·r ,

~2(k + Kα)2

2mn
< Ecutoff
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Effective mass in layers of spherical nuclei/bubbles

Chamel, Nucl.Phys. A747 (2005) 109.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Baryon density (fm
-3

)

0

5

10

15

20

E
ff

ec
tiv

e 
m

as
s

simple cubic
body centered cubic
face centered cubic
simple cubic
body centered cubic
face centered cubic

⇒ strong enhancement of m? at low densities

⇒ small dependence on lattice structure

LATEX – p.62



Effective mass in layers of spherical nuclei/bubbles

Chamel, Nucl.Phys. A747 (2005) 109.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Baryon density (fm
-3

)

0

5

10

15

20

E
ff

ec
tiv

e 
m

as
s

simple cubic
body centered cubic
face centered cubic
simple cubic
body centered cubic
face centered cubic

⇒ strong enhancement of m? at low densities

⇒ small dependence on lattice structure

LATEX – p.62



Effective mass in layers of spherical nuclei/bubbles

Chamel, Nucl.Phys. A747 (2005) 109.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Baryon density (fm
-3

)

0

5

10

15

20

E
ff

ec
tiv

e 
m

as
s

simple cubic
body centered cubic
face centered cubic
simple cubic
body centered cubic
face centered cubic

⇒ strong enhancement of m? at low densities

⇒ small dependence on lattice structure

LATEX – p.62



Effective mass in the pasta phase

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Pasta phases are anisotropic⇒ mobility tensor Kij

Nuclear matter is homogeneous along slabs (lasagna) or
cylinders/tubes ⇒ no Bragg scattering K‖ = nn/mn
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Spin-orbit coupling

Chamel, Nucl.Phys. A747 (2005) 109.
Cylinder shaped nuclei (nb = 0.06 fm−3) with spin-orbit coupling

VLS{r} =
1

r

(
λ1

dnb

dr
− λ2

d

dr
(nn − np)

)
1

2
lzσz

5

10

15

E
ne

rg
y 

(M
eV

)

M MΓ K

⇒ m?
⊥/mn = 1.35 7→ m?

⊥/mn = 1.37
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Superfluidity and Bragg scattering

F Mean field approximation
⇒ Hartree-Fock Bogoliubov (Bogoliubov-de Gennes)
equations

(H{r} − µ
∆∗{r}

∆{r}
−H∗{r}+ µ

)(
u{r}
v{r}

)
= E

(
u{r}
v{r}

)

assuming contact interactions in particle-particle and
particle-hole channels

F Lattice symmetry ∆{r + T} = ∆{r} and H{r + T} = H{r}
⇒ Floquet-Bloch theorem

uk{r + T} = ei k·Tuk{r} vk{r + T} = ei k·Tvk{r}
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BCS approximation

∆{r} slowly varying

⇒
∫

d3r ϕ∗αk{r}∆{r}ϕβk{r} ' ∆α{k}δαβ

uαk{r} = ϕαk{r} cos θαk vαk{r} = ϕαk{r} sin θαk

Hϕαk = Eα{k}ϕαk

⇒ Eα{k} =
√

(Eα{k} − µ)2 + ∆α{k}2

cos2 θαk =
Eα{k}+ Eα{k} − µ

2Eα{k}
sin2 θαk =

Eα{k} − Eα{k}+ µ

2Eα{k}
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Pairing and effective mass

Carter, Chamel, Haensel (2005), Nucl. Phys. A in press
Effects of pairing on mobility ?

F without pairing

K =
∑

α

1

3

∫
1

~2
|∇kEα{k}|2δ{Eα{k} − µ}

d3k

(2π)3

F with pairing

K =
∑

α

1

3

∫
1

~2
|∇kEα{k}|2

∆α{k}2
2Eα{k}3

d3k

(2π)3

⇒ mobility is not qualitatively affected by pairing !

In uniform nuclear matter m? ≡ nn/K = mn
⊕ independent of ∆
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Neutronics in the crust and pulsar glitches

F Some pulsars suddenly spin up⇒ glitches δΩ > 0

F Glitches interpreted as a sudden transfer of angular
momentum from the neutron superfluid to the crust

F Neutron transport in the crust is strongly affected by Bragg
scattering (m? � mn)

⇒ glitches are direct probes for neutronics in the crust !
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Summary & Perspectives

F Structure of the outer crust completely determined by known
nuclei up to ρ ∼ 1011 g.cm−3

F So far only one fully self-consistent quantum calculation of
the inner crust by Negele& Vautherin (1973)⇒ strong
proton shell effects, size of nuclear clusters ∼ independent
of density. Consistent results from TF and CLDM.

F But recent calculations of Baldo et al.⇒ no shell effects, Z
very sensitive to pairing ! Remain to be clarified. Medium
effects on the pairing field ? Superfluidity in the crust⇒
cooling, pulsar glitches.

F Necessity to go beyond the W-S approximation to study
neutron transport in the crust⇒ band theory. Bragg
scattering⇒ strong enhancement of neutron mass !
Neutronics in the crust⇒ oscillations modes, pulsar glitches

F Neutron band effects on the structure of the crust ? on the
superfluidity ? Effects of disorders (impurities, defects, etc.)
on the transport properties ? LATEX – p.69
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