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Neutron conduction in the inner crust of a neutron star in the framework of the band theory of solids
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Even though the “free” neutrons in the inner crust of a neutron star are superfluid, they are still strongly coupled
to nuclei due to nondissipative entrainment effects. These effects have been systematically studied in all regions
of the inner crust in the framework of the band theory of solids. Using concepts from solid-state physics, it is
shown that the density of conduction neutrons, i.e., neutrons that are effectively free, can be much smaller than
the density of unbound neutrons (by an order of magnitude in some layers) due to Bragg scattering. These results
suggest that a revision of the interpretation of various observable neutron-star phenomena might be necessary.
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I. INTRODUCTION

Born from the catastrophic gravitational core collapse of
massive stars with M � 8M� at the end point of their evolution
during type II supernova explosions, neutron stars are among
the most compact objects in the Universe. The surface of a
neutron star, which is composed mainly of iron, is generally
obscured by a thin atmosphere. A few meters below the surface
at densities above ∼104 g cm−3, matter is so compressed
that atoms, which are arranged in a regular Coulomb lattice,
are fully ionized and coexist with a degenerate electron gas.
Deeper in the star, nuclei become more and more neutron
rich [1]. At densities above ∼4 × 1011 g cm−3, some neutrons
drip out of “nuclei” thus forming a neutron liquid [2], which
is expected to be superfluid at low enough temperatures [3].
The crust of a neutron star extends up to about ∼1014 g cm−3

(i.e., half the density found inside heavy nuclei), at which
point nuclei dissolve into a uniform mixture of electrons and
nucleons.

Various astrophysical neutron-star phenomena such as
pulsar glitches or quasiperiodic oscillations in soft-gamma
repeaters are expected to be related to the dynamical properties
of the neutron superfluid in the inner crust (see, e.g., [4] for
a recent review). In modeling these events, the neutron super-
fluid is generally assumed to be flowing freely through the
crust because of the absence of viscous drag. This assumption
is actually unrealistic. Even though the neutron superfluid can
flow without friction, it can still be entrained by the crustal
nuclei [5–7]. Unlike viscous drag, this entrainment effect is
nondissipative and therefore it persists in the superfluid phase.
Entrainment effects in neutron-star crusts have been already
estimated, but only in the shallow layers of the inner crust
around the neutron drip density ∼4.7 × 1011 g cm−3 and near
the crust bottom at densities above 5 × 1013 g cm−3 using
different crust models [8–10]. These results suggested that
there might exist regions at intermediate densities where the
neutron propagation could be completely suppressed owing to
the presence of a band gap in the energy spectrum of unbound
neutrons. Such crustal layers would resist the flow of a neutron
current in the same way as an ordinary insulator resists the flow
of an electric current.

In this paper, entrainment effects are systematically studied
in all regions of the inner crust of a cold nonaccreting neutron

star using a unified treatment based on the nuclear energy
density functional (EDF) theory (see, e.g., [11] for a review). In
particular, the static long-wavelength neutron current-current
correlation function is computed for various densities, ranging
from neutron drip to the crust-core transition. This function,
which can be expressed in terms of an effective neutron
mass or less ambiguously in terms of a density of conduction
neutrons, is a necessary microscopic ingredient for a realistic
hydrodynamical description of the neutron superfluid in the
crust [5,6]. Both the equilibrium composition of the crust and
the current-current correlation function have been calculated
consistently using the same nuclear energy density functional.

II. NUCLEAR BAND THEORY OF NEUTRON-STAR
CRUSTS

Since the seminal work of Negele and Vautherin [12],
the inner crust of a neutron star has been generally studied
in the framework of the Wigner-Seitz approximation [13]
according to which the crust is divided into a set of independent
spheres centered around each lattice site. Each cell can thus
be regarded as an isolated giant “nucleus” for which the usual
methods from nuclear physics can be applied. Even though
this approach has been fruitful for calculating ground-state
properties (at least at not too high densities, as discussed in
Refs. [14,15]), it is inappropriate for studying the low-energy
dynamics of “free” neutrons which are delocalized over the
whole crust like free electrons in ordinary metals. Indeed, the
interactions of unbound neutrons with the crystal lattice are
highly nonlocal, thus leading to long-range correlations which
cannot be properly taken into account in the Wigner-Seitz
approximation.

In this work, the neutron conduction in the neutron-star
crust will be studied using the band theory of solids [16].
Although this theory has been very successfully employed in
various systems in optics, acoustics, and condensed matter
physics, its application to neutron-star crusts is rather recent
[8–10]. The band theory relies on the assumption that the
solid can be treated as a perfect crystal. Although the crust
of a real neutron star might not be a perfect crystal (see, e.g.,
Sec. 3.4 of Ref. [4], and references therein), this is still a
reasonable approximation for cold nonaccreting neutron stars.
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In the rest frame of the crust, both bound and unbound neutrons
are supposed to be described by static periodic mean fields.
In the model we employ here, these fields are generated self-
consistently using the nuclear energy density functional theory
with a semilocal functional of the Skyrme type [11]. This
functional is of the form

E = Ekin + ECoul + ESky, (1)

where Ekin is the kinetic energy of the sample volume, ECoul

is the Coulomb energy (using the Kohn-Sham approximation
for the exchange part [17]), and ESky = ∫

d3r ESky(r) is the
nuclear energy. Ignoring pairing, which represents a small
correction to the total energy, ESky is a functional of the
following local densities and currents with q = n, p for
neutron and proton, respectively:
(i) the number density

nq(r) =
∑

σ=±1

nq(r, σ ; r, σ ), (2)

(ii) the kinetic density

τq(r) =
∑

σ=±1

∫
d3r ′ δ(r − r ′)∇ · ∇′nq(r, σ ; r ′, σ ), (3)

and (iii) the spin current vector density

J q(r) = − i

2

∑
σ,σ ′

= ±1
∫

d3r ′ δ(r − r ′)(∇ − ∇′)

×nq(r, σ ; r ′, σ ′)〈σ ′|σ̂ |σ 〉, (4)

where nq(r, σ ; r ′, σ ′) is the density matrix in coordinate space
(denoting the spin states by σ, σ ′ = 1,−1 for spin up, spin
down, respectively) and σ̂ is used to indicate Pauli spin
matrices. Introducing the isospin index t = 0, 1 for isoscalar
and isovector quantities, respectively,1 the Skyrme functional
ESky can be expressed as

ESky =
∑
t=0,1

Cn
t n2

t + C�n
t nt�nt + Cτ

t nt τt + C∇J
t nt∇ · J t

+1

2
CJ

t J2
t . (5)

The C coefficients are determined by fitting experimental
nuclear data and/or properties of infinite homogeneous nu-
clear matter as obtained from many-body calculations. The
coefficients Cn

t are generally not constant but depend on the
(isoscalar) density n(r). Historically the Skyrme functional
was obtained from the Hartree-Fock approximation using
zero-range effective nucleon-nucleon interactions of the kind

vi,j = t0(1 + x0Pσ )δ(r ij ) + 1

2
t1(1 + x1Pσ )

1

h̄2

[
p2

ij δ(r ij )

+δ(r ij ) p2
ij

] + t2(1 + x2Pσ )
1

h̄2 pij · δ(r ij ) pij

1Isoscalar quantities, also written without any subscript, are sums
over neutrons and protons (e.g., n0 = n = nn + np), while isovector
quantities are differences between neutrons and protons (e.g., n1 =
nn − np).

+1

6
t3(1 + x3Pσ )n(r)α δ(r ij ) + i

h̄2 W0(σ̂ i + σ̂ j ) · pij

×δ(r ij ) pij , (6)

where r ij = r i − rj , r = (r i + rj )/2, pij = −ih̄(∇i −
∇j )/2 is the relative momentum σ̂ i and σ̂ j are Pauli spin
matrices, and Pσ is the two-body spin-exchange operator.
Minimizing the total energy E for fixed numbers of neutrons
and protons leads to the set of self-consistent equations

hq(r)ϕ(q)
αk (r) = ε

(q)
αk ϕ

(q)
αk (r), (7)

in which the single-particle (s.p.) Hamiltonians hq(r) can be
expressed as

hq(r) = −∇ · Bq(r)∇ + Uq(r) − iW q(r) · ∇ × σ̂ , (8)

with the various fields defined by

Bq(r) = δE

δτq(r)
, Uq(r) = δE

δnq(r)
, W q(r) = δE

δ J q(r)
.

(9)

These fields depend on the local densities and currents,
Eqs. (2)–(4), which in turn can be expressed in terms of
occupied s.p. wave functions ϕ

(q)
αk (r) (see, e.g., Ref. [11]). The

periodicity of the crystal lattice means that

Bq(r + �) = Bq(r), (10)

Uq(r + �) = Uq(r), (11)

W q(r + �) = W q(r), (12)

for any lattice translation vector �. The boundary conditions to
be used in Eqs. (7) and (8) are imposed by the Floquet-Bloch
theorem [16]

ϕ
(q)
αk (r + �) = exp(i k · �)ϕ(q)

αk (r), (13)

where k is the Bloch wave vector and α is the band index.
Because protons are tightly bound to nuclei, proton band

structure effects are very small (i.e., the proton s.p. energies
are essentially independent of k) and will not be discussed
here. In the following, the neutron energy bands and neutron
wave functions will thus be denoted simply as εαk and ϕαk(r),
respectively.

III. CONDUCTION NEUTRONS

The static long-wavelength neutron current-current corre-
lation function determines the mass current of the neutron
liquid induced by a change of crystal momentum, the lattice
being fixed. Neutron pairing, which gives rise to neutron
superfluidity, is expected to have a minor impact on the
current-current correlation function [18] and will thus be
neglected for simplicity. In the ground state, all neutron s.p.
states lying below the Fermi level are occupied so that the
neutron liquid is at rest in the crust frame. Considering a small
shift δk in k space of the Fermi surface (FS), each s.p. state
will then carry on average a net crystal momentum pn ≡ h̄δk
leading to a net mass current j n. Neglecting backflow effects
(i.e., assuming that the s.p. energies remain unaffected), the
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current is given to first order in δk by

j n = mn

∑
α

∫
d3k

(2π )3h̄
δñαk∇kεαk ≡ nc

n pn, (14)

where mn is the neutron mass, δñαk ≡ ñαk − ñ0
αk denotes the

change in the distribution function (ñ0
αk being the ground-

state distribution), while the density nc
n is defined in terms of

the trace of the effective mass tensor introduced in solid-state
physics [16](

1

m∗
n(k)α

)
ij

= 1

h̄2

∂2εαk

∂ki∂kj

, (15)

nc
n = 1

3

∑
α

∫
d3k

(2π3)
ñ0

αk Tr

[
mn

m∗
n(k)α

]
. (16)

Incidentally the neutron effective mass tensor (15) has been
also introduced for the study of neutron diffraction in ordinary
crystals [19,20]. Since the ground-state distribution is simply
given by ñ0

αk = H (εF − εαk), where H (x) is the Heaviside
unit-step distribution, the integral in Eq. (16) has to be taken
over the Fermi volume. The Fermi energy εF is the Lagrange
multiplier introduced during the minimization of the total
energy (1) in order to ensure the conservation of the neutron
number

nn =
∑

α

∫
d3k

(2π3)
ñ0

αk. (17)

The density nc
n can be interpreted as the density of

conduction neutrons by analogy with conduction electrons in
ordinary metals. These conduction neutrons are not entrained
by nuclei and can thus be considered as being effectively free.
Equation (14) implies that in an arbitrary frame where the
crust moves with a velocity v p, the neutron mass current will
no longer be aligned with the neutron momentum, but will be
given by

j n = nc
n pn + (

nn − nc
n

)
mnv p. (18)

The quantity nn − nc
n can be interpreted as the density of

neutrons that are effectively bound to nuclei.
Alternatively, the neutron conduction can be expressed

in terms of an effective mass m�
n by writing the neutron

momentum in the crust frame

pn ≡ m�
nvn, (19)

where vn is the average velocity of free neutrons defined by

j n ≡ nf
nmnvn. (20)

Comparing Eqs. (19) and (20) with (14) leads to the following
expression for the effective mass:

m�
n = mn

nf
n

nc
n

. (21)

IV. NUMERICAL RESULTS

In principle, the ground-state structure of the neutron-star
crust at a given average nucleon density could be determined
by solving self-consistently the EDF equations (7)–(9) with

Bloch boundary conditions (13) under the constraint of beta
equilibrium. Considering that the equilibrium structure of
the crust is a body centered cubic crystal, these calculations
should be repeated for different lattice spacings until the
lowest total energy (1) is found. Such calculations would
be computationally extremely expensive. For this reason, we
have taken the composition of the crust, as found in Ref. [2].
These calculations were based on the fourth-order extended
Thomas-Fermi (ETF) method with proton shell effects added
via the Strutinsky-integral (SI) theorem. Neutron shell effects
were neglected since they were shown to be much smaller
than proton shell effects [21]. This so-called ETFSI method
is actually a high-speed approximation to the self-consistent
EDF equations (7)–(9). The functional BSk14 [22] used in
Ref. [2] was not only fitted to essentially all the available
experimental atomic mass data with a root mean square
deviation of 0.73 MeV, but was also constrained to reproduce
the neutron-matter equation of state of Ref. [23], obtained from
many-body calculations using realistic two- and three-body
nucleon-nucleon interactions. As a matter of fact, this equation
of state is in good agreement with more recent calculations
[24–26] in the density domain relevant to neutron-star crusts.
For all these reasons, the Skyrme interaction BSk14 is
particularly well suited for studying neutron-star crusts. The
neutron and proton density distributions are shown in Fig. 1
for a few crustal layers.

The neutron energy bands εαk have been calculated by
solving Eqs. (7)–(9) with Bloch boundary conditions (13)
using the self-consistent fields obtained in Ref. [2]. The
spin-orbit potential W n(r), which is proportional to ∇nn(r)
and ∇np(r), is much smaller in neutron-star crusts than that in
isolated nuclei and has therefore been neglected. The neutron
band structure has been computed by expanding the neutron
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FIG. 1. Neutron (solid line) and proton (dashed line) density
profiles inside the Wigner-Seitz cell for different baryon densities n̄

(in fm−3), as obtained with the ETFSI method [2]. Note the formation
of “bubbles” at n̄ = 0.08 fm−3: the nucleon densities are slightly
larger at the cell edge than at the cell center.
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s.p. wave functions into plane waves

ϕk(r) = exp(ik · r)
∑

G

ϕ̃k(G) exp(iG · r), (22)

where G are reciprocal lattice vectors. By definition, exp(iG ·
�) = 1 so that the Bloch boundary conditions (13) are
automatically satisfied. In this way, the EDF equation for the
neutrons reduces to the matrix eigenvalue problem∑

β

[(k + Gα) · (k + Gβ)B̃n(Gβ − Gα)

+Ũn(Gβ − Gα)]ϕ̃k(Gβ) = εαk ϕ̃k(Gα), (23)

with

B̃n(G) = 1

Vcell

∫
d3r Bn(r) exp(−iG · r),

Ũn(G) = 1

Vcell

∫
d3r Un(r) exp(−iG · r). (24)

These integrals, taken over any primitive cell of volume Vcell,
can be efficiently calculated using fast Fourier transforms.

In the shallow layers of the inner crust, the linearized
augmented plane wave method [10] would have been computa-
tionally much faster. Unfortunately this method can be reliably
applied only in the vicinity of the neutron drip transition where
only a few neutron bands (in the continuum) are filled. For this
reason, the plane wave method has been used in all regions of
the inner crust.

The number of calculated neutron bands varies from 100
in the shallowest layers of the inner crust at n̄ = 0.0003 up
to 850 at n̄ = 0.03 fm−3. A few band structures are shown
in Figs 2–4. We have also shown the band structure in the
reduced zone scheme [16] of a uniform neutron gas of density

FIG. 2. Left panel: neutron band structure in the inner crust of
a neutron star at the average baryon density n̄ = 0.0003 fm−3 along
high-symmetry lines in the first Brillouin zone (only unbound states
are shown). The arrow indicates the position of the neutron Fermi
energy. Right panel: band structure of a uniform neutron gas at density
nf

n (reduced zone scheme). For comparison with the left panel, all
bands have been slightly shifted.

FIG. 3. Left panel: neutron band structure in the inner crust of
a neutron star at the average baryon density n̄ = 0.03 fm−3 along
high-symmetry lines in the first Brillouin zone (only unbound states
are shown). The arrow indicates the position of the neutron Fermi
energy. Right panel: band structure of a uniform neutron gas at density
nf

n (reduced zone scheme). For comparison with the left panel, all
bands have been slightly shifted.

nf
n (empty lattice limit), whose energies are simply given by

εαk = Bn

(
nf

n

)
(k + Gα)2 + Un

(
nf

n

)
. (25)

As can be seen in Fig. 2, the energy spectrum of unbound neu-
tron states near the neutron drip point very closely resembles
that of a uniform neutron gas, even though the periodic mean-
field potential drops by ∼50 MeV inside nuclei. This striking
result is the consequence of the Phillips-Kleinman cancellation
theorem [27]. The orthogonalization of the unbound states
to the bound states leads to an effective repulsive nonlocal
and energy-dependent potential which partially cancels the
strongly attractive mean-field potential of nuclei. To a large
extent, the same kind of cancellation occurs in the densest
regions of the crust as can be inferred from Fig. 4. On the
contrary, the neutron band structures in the intermediate layers
of the inner crust differ significantly from that of a uniform
neutron gas, as illustrated in Fig. 3. In particular, the energy
spectrum is much denser, thus revealing that on average the
energies εαk have a much weaker k dependence (almost flat
bands) than that given by Eq. (25). As a result, the conduction
neutron density nc

n given by Eq. (16) is expected to be much
smaller than the density nf

n of unbound neutrons at densities
n̄ ∼ 0.03 fm−3.

The computation of the conduction neutron density requires
the evaluation of the effective mass tensor (15) for all occupied
bands. In fact, it follows from Eq. (16) and the periodicity of
the s.p. energies that completely filled bands do not contribute
to the current. This can be easily seen by simply rewriting
Eq. (16) as an integral over the Fermi surface using the Green-
Ostrogradsky theorem

nc
n = mn

24π3h̄2

∑
α

∫
F
|∇kεαk|dS (α). (26)
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FIG. 4. Left panel: neutron band structure in the inner crust of
a neutron star at the average baryon density n̄ = 0.08 fm−3 along
high-symmetry lines in the first Brillouin zone (only unbound states
are shown). The arrow indicates the position of the neutron Fermi
energy. Right panel: band structure of a uniform neutron gas at density
nf

n (reduced zone scheme). For comparison with the left panel, all
bands have been slightly shifted.

Even though this expression is fully equivalent to Eq. (16),
it is computationally much more convenient since only the
evaluation of the first derivative of εαk is needed. In addition,
this derivative can be easily calculated analytically using the
Hellmann-Feynman theorem [28]

∂εk

∂ki

=
∑

Gα,Gβ

ϕ̃k(Gα)∗B̃n(Gβ − Gα)
(
2ki + Gi

α + Gi
β

)
ϕ̃k(Gβ),

(27)

with the wave functions normalized as∑
β

|ϕ̃k(Gβ)|2 = 1. (28)

For each average density n̄, the neutron Fermi energy εF has
been determined solving Eq. (17) using the mean-value point
method [29]. The Fermi surface integral in Eq. (18) has been
evaluated with the Gilat-Raubenheimer method [30] using up
to 1360 points in the irreducible domain (i.e., 65 280 points
in the first Brillouin zone) in order to ensure a precision
of a few percent. Results are summarized in Table I. As
expected from the band structures, the flow of neutrons is
almost unaffected by nuclei in the peripheral regions of
the inner crust. On the contrary, the neutron conduction
is found to be almost completely suppressed at densities
n̄ ∼ 0.02–0.03 fm−3. Whereas more than 90% of neutrons are
unbound in these layers, less than 10% of them are actually
conducting leading to a huge enhancement of the neutron
effective mass m�

n 
 13.6mn. Incidentally, this result is in close
agreement with the effective mass m�

n 
 15.4mn obtained
in a previous work [9] using a different crust model, thus
suggesting that such strong entrainment effects are generic.
However, further work remains to be done exploring the
dependence of m�

n on the nuclear energy density functional.

TABLE I. Composition of the inner crust of cold nonaccreting
neutron stars as obtained from Ref. [2]. Z and A are, respectively, the
average number of protons and the total average number of nucleons
inside the Wigner-Seitz cell. nn is the average neutron density, nf

n is the
density of free neutrons as defined by the quantity ρBn in Ref. [2], nc

n

is the density of conduction neutrons, and m�
n is the neutron effective

mass. Note that in the densest layer, nf
n > nn due to the formation of

bubbles as indicated in Fig. 1.

n̄ (fm−3) Z A nf
n/nn (%) nc

n/nf
n (%) m�

n/mn

0.0003 50 200 20.0 82.6 1.21
0.001 50 460 68.6 27.3 3.66
0.005 50 1140 86.4 17.5 5.71
0.01 40 1215 88.9 15.5 6.45
0.02 40 1485 90.3 7.37 13.6
0.03 40 1590 91.4 7.33 13.6
0.04 40 1610 88.8 10.6 9.43
0.05 20 800 91.4 30.0 3.33
0.06 20 780 91.5 45.9 2.18
0.07 20 714 92.0 64.6 1.55
0.08 20 665 104 64.8 1.54

V. MICROSCOPIC ORIGIN OF ENTRAINMENT

The large discrepancy between the density of unbound
neutrons and the density of conducting neutrons is somehow
counterintuitive. Indeed in ordinary metals, the electrons that
are tightly bound inside the individual atoms constituting
the solid have their wave function vanishing exponentially
outside atoms and are therefore not much affected by the Bloch
boundary conditions. As a consequence, their energy bands in
k space are essentially flat so that ∇kεαk 
 0, hence yielding a
negligible contribution to the current. The nontrivial electron
band structure arises from the most loosely bound “valence”
electrons in the isolated atoms which become delocalized
in a metal and which can be generally identified with the
conduction electrons (still, the density of valence electrons
is not exactly equal to the density of conduction electrons).
On the contrary, the neutron-saturated nuclei found in the
inner crust of a neutron star only exist because of the Pauli
blocking effect from the surrounding neutron liquid but would
decay immediately in vacuum. For the reasons mentioned
above, neutrons bound inside nuclei do not contribute to the
current. Since unbound neutrons are delocalized, one might
naively expect that they are all conducting. Indeed, ignoring the
crystal lattice and treating the unbound neutrons as a uniform
gas of density nf

n, it follows immediately from Eq. (16) or
(26) that nc

n = nf
n. However, it should be emphasized that the

density of conduction neutrons is fundamentally different from
the density of unbound neutrons: the former characterizes the
dynamics of the neutron liquid while the latter is a ground-state
property. These two densities are generally not equal because
unbound neutrons can be scattered by the crystal according to
Bragg’s law.

The effects of Bragg scattering are embedded in the
effective mass tensor (15) appearing in the definition (16) of
the conduction neutron density. The components of this tensor
need not be positive and can actually be negative for wave
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vectors k such that Bragg reflection is allowed. In particular,
an unbound neutron will be reflected whenever its Bloch wave
vector k lies on a Bragg plane, i.e., k satisfies the von Laue
condition 2k · G = G2 for any reciprocal lattice vector G. As
a result, the neutron current will be suppressed however small
the periodic mean-field potential is. Using perturbation theory
and setting Bn(r) ≡ Bn for simplicity, it can be shown that in
the vicinity of a Bragg plane the s.p. energies of free neutrons
are split into two bands [16]

ε±
k 
 1

2
Bn[k2 + (k − G)2]

±
√

1

4
B2

n[k2 − (k − G)2]2 + |Ũn(G)|2. (29)

It is easily seen that the effect of the periodic potential is to
flatten the bands around Bragg planes by introducing a gap
of magnitude 2|Ũn(G)|. As a consequence, the conduction
neutron density will be reduced whenever the Fermi energy
lies on the top (bottom) of the lower (upper) band. The neutron
conduction thus depends on two factors: (i) the amount of
flattening of the bands which in turn is governed by the
periodic potential and (ii) the position of the Fermi level
which is determined by the total neutron density. The more
the Fermi sphere intersects Bragg planes, the larger will
be the effect of Bragg scattering on the neutron conductivity.
The number of intersections depends on the ratio between
the Fermi volume and the volume of the first Brillouin zone.
According to Luttinger’s theorem [31], the Fermi volume
associated with unbound states is given by VF = (2π )3nf

n.
By definition, the volume of the first Brillouin zone is equal
to VBZ = (2π )3/Vcell. Therefore the ratio VF/VBZ = nf

nVcell is
simply equal to the average number of unbound neutrons inside
the Wigner-Seitz cell (or equivalently to the average number
of unbound neutrons per nucleus). Basically, this number is
the lowest at the neutron drip point, peaks at about 1417 at
density n̄ = 0.03 fm−3, and decreases at higher densities. As
expected, the resistance of the crust to the flow of a neutron
current follows a similar behavior (see Table I).

VI. CONCLUSIONS

Despite the absence of viscous drag, the neutron superfluid
permeating the inner crust of a neutron star is still strongly
coupled to nuclei due to nondissipative entrainment effects.
These effects have been systematically studied in all regions
of the inner crust of a cold nonaccreting neutron star in the
framework of the band theory of solids using an effective
Skyrme nuclear energy density functional which not only
yields an excellent fit to essentially all experimental atomic
masses but was also constrained to reproduce a realistic
neutron-matter equation of state.

Some regions of the inner crust are found to strongly
resist the flow of a neutron current in the same way as
an ordinary insulator resists the flow of an electric current.
As a consequence the density of conduction neutrons, i.e.,
neutrons not entrained by nuclei, turns out to be much
smaller than the density of unbound neutrons, thus leading
to a huge enhancement of the neutron effective mass. These
results suggest that a revision of the interpretation of many
observable astrophysical phenomena such as pulsar glitches
[32], quasiperiodic oscillations in soft-gamma repeaters [33],
and the cooling of neutron stars [34], might be necessary.

Incidentally, the kind of entrainment effects discussed here
are also expected to be observed in laboratory superfluid sys-
tems. Indeed, qualitatively similar results have been predicted
for a unitary Fermi gas in a 1D optical lattice [35]. Since a
dilute neutron gas is approximately in the unitary regime [36],
cold atom experiments could shed light on the properties of
superfluid neutrons in neutron-star crusts.
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