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Neutron star crust and observations

Many observational phenomenae are related to the physics of
the crust



Structure of neutron star crust



Electronic structure
The electronic properties in the crust are much simpler than in
terrestrial matter !

Ceperley et al., PRL45(1980) 566.

rs ≡ d/a0

a0 ≡ ~
2/mee2

d ≡ (3/4πne)
1/3

metals rs ∼ 2 − 6
neutron star crust
rs ∼ 10−5 − 10−2



Composition of the outer crust (T=0)

The composition of the outer crust is completely determined by
the experimental atomic masses except in the bottom layers
above ∼ 6 × 1010 g.cm−3

Rüster et al.,PRC73 (2006) 035804.



Composition of the outer crust (T=0)
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“Neutronic” crystals

The inner crust of neutron stars is the nuclear analog of periodic
systems in condensed matter : electrons in solids, photonic and
phononic crystals, cold atomic Bose gases in optical lattice

⇒ neutron star crust can thus be viewed as a “neutronic” crystal

new approach by applying the band theory
of solids at the nuclear scale
Chamel, Nucl.Phys.A747(2005)109.
Chamel, Nucl.Phys.A773(2006)263.



Band theory

Floquet-Bloch theorem

« I found to my delight that the wave differed from the
plane wave of free electrons only by a periodic
modulation. »

Bloch, Physics Today 29 (1976), 23-27.

ϕαkkk (rrr ) = eikkk ·rrruαkkk (rrr )

uαkkk (rrr + TTT ) = uαkkk (rrr )

α → rotational symmetry around the lattice sites

kkk → translational symmetry of the crystal



Mean field approximation

In the Hartree-Fock approximation with Skyrme forces, the
single particle states are the solutions of

h(q)
0 ϕ

(q)
αkkk (rrr ) = ε

(q)
αkkk ϕ

(q)
αkkk (rrr )

h(q)
0 ≡ −∇∇∇ · ~

2

2m⊕
q (rrr )

∇∇∇ + Uq(rrr ) − iWqWqWq(rrr ) · ∇∇∇× σσσ

~
2

2m⊕
q (rrr )

=
δE(rrr )
δτq(rrr )

, Uq(rrr ) =
δE(rrr )
δnq(rrr )

,WqWqWq(rrr ) =
δE(rrr )
δJqJqJq(rrr )



Mean field approximation

Equivalently the HF equations can be solved for uαkkk (rrr )

(h(q)
0 + h(q)

kkk )u(q)
αkkk (rrr ) = ε

(q)
αkkk u(q)

αkkk (rrr )

h(q)
kkk ≡ ~

2k2

2m⊕
q (rrr )

+ vqvqvq · ~kkk ,

vqvqvq ≡ 1
i~

[rrr , h(q)
0 ]



Symmetries

By symmetry, the crystal lattice can be partitionned into
identical primitive cells. The HF equations need to be solved
only inside one cell.

The shape of the cell depends on the crystal symmetry

The boundary conditions are fixed by the Floquet-Bloch
theorem

ϕαkkk (rrr + TTT ) = eikkk·TTT ϕαkkk (rrr ) ↔ uαkkk (rrr + TTT ) = uαkkk (rrr )



Wigner-Seitz cell
In particular the Wigner-Seitz or Voronoi cell is very useful
since it reflects the local symmetry the lattice.

Example : body centered cubic lattice



Wigner-Seitz approximation

Approximation proposed by Wigner&Seitz in
1933 in the study of metallic sodium (only
one valence electron per site) :
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Wigner-Seitz approximation

Approximation proposed by Wigner&Seitz in
1933 in the study of metallic sodium (only
one valence electron per site) :

Neglect the contribution of h(q)
kkk

Replace the W-S cell by a simpler cell of same volume
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Neumann boundary conditions with the vanishing of the
normal derivative of ϕ as suggested by Wigner-Seitz
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Validity of the W-S approximation
Comparison between the W-S approximation and the band
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Validity of the W-S approximation
Comparison between the W-S approximation and the band
theory near neutron drip

assuming spherical nuclear clusters
neglecting neutron pairing effects.

Due to proximity effects the neutron pairing field is smaller than
its value in infinite matter and of order of a few ∼ 10 keV.
Baldo et al. (2007), arXiv :nucl-th/0703099
Monrozeau et al. (2007), arXiv :nucl-th/0703064



Validity of the W-S approximation
Comparison between the W-S approximation and the band
theory near neutron drip

assuming spherical nuclear clusters
neglecting neutron pairing effects.

Body centered cubic crystal of zirconium like clusters

ρ = 7 × 1011 g.cm−3

Rcell = 49 fm
Z = 40
N = 90 bound + 70 unbound
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W-S approximation vs band theory

Density of unbound neutrons in the W-S cell with 200Zr.
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Chamel et al, Phys.Rev.C75 (2007), 055806

⇒ the W-S approximation leads to spurious fluctuations due to
box size effects



W-S approximation vs band theory (II)

W-S approximation

full spherical symmetry

band theory

discrete rotational symmetry



W-S approximation vs band theory (II)

W-S approximation

full spherical symmetry

band theory

discrete rotational symmetry

⇒ the W-S approximation overestimates the neutron shell
effects



Neutron energy spectrum
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Neutron energy spectrum

W-S approximation band theory
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W-S approximation vs band theory (II)

Density of unbound neutron single particle states
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W-S approximation vs band theory (II)

Density of unbound neutron single particle states

in the W-S approximation

N (E) =
1

Vcell

∑

n,ℓ

(2ℓ + 1)δ
(

E − En,ℓ

)

in the band theory

N (E) =
1

4π3

∑

α

∫

d3k δ
(

E − Eαkkk
)

=
1

4π3

∮

Ekkk =E

dS
|∇∇∇kkkEkkk |



W-S approximation vs band theory (II)

Density of unbound neutron single particle states

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5

E (MeV)

g(
E

) 
(M

eV
-1

)

10
-1

1

10

10 2

0 0.1 0.2 0.3 0.4 0.5

WS

BT

Fermi

E (MeV)
N

Chamel et al, Phys.Rev.C75 (2007), 055806



W-S approximation vs band theory (II)

Density of unbound neutron single particle states
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⇒ The average density of states is well reproduced by that of
the Fermi gas



Neutron Fermi surface

At low temperatures the transport properties depend on the
topology of the Fermi surface

Chamel et al. Phys.Rev.C75(2007), 055806

The Fermi surface is spherical (∼ alkali metals) at densities
below nn .

√
2π/3Vcell but non spherical at higher densities (∼

transition metals).



Optical effective mass

m⋆ = nn/K

K =
1

12π3~2

∫
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Optical effective mass

m⋆ = nn/K
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why “optical” ?
dielectric constant
of metals (ωτ ≫ 1)

ε{ω} ≃ 1 − ω2
p⋆/ω

2 + εinter

ω2
p⋆ = 4πe2ne/m⋆

Cohen, Phil.Mag.49(1958)762



Macroscopic vs microscopic effective mass

m⋆ is the average over all occupied states

m⋆ =
nn

K K =
1
3

∫

F

d3k
(2π)3 Tr

1
m⋆(kkk)

of the local effective mass tensor defined by

(

1
m⋆(kkk)

)ij

=
1
~2

∂2Ekkk

∂ki∂kj

usually introduced in neutron diffraction.
Zeilinger et al., PRL57 (1986), 3089.



Macroscopic vs microscopic effective mass

m⋆ is the average over all occupied states

m⋆ =
nn

K K =
1
3

∫

F

d3k
(2π)3 Tr

1
m⋆(kkk)

of the local effective mass tensor defined by

(

1
m⋆(kkk)

)ij

=
1
~2

∂2Ekkk

∂ki∂kj

usually introduced in neutron diffraction.
Zeilinger et al., PRL57 (1986), 3089.

⇒ macroscopic effective mass relevant for hydrodynamics



Effective mass and entrainment effects

m⋆ governs the dynamics of the free neutrons.

In the crust rest frame

pnpnpn = m⋆vnvnvn

therefore in another frame, the momentum and the velocity are
not aligned

pnpnpn = m⋆vnvnvn + (m − m⋆)vcvcvc

⇒ entrainment effects (non dissipative)

For electrons in solids m⋆ ∼ 1 − 2me.



Example in solid state physics : copper

m⋆ = (1.44 ± 0.01)me

Roberts, Phys. Rev. 118 (1960),
1509.
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Neutron specific heat at high temperatures

At high temperatures, the free neutrons behave almost like an
ideal Fermi gas
preliminary calculations



Neutron specific heat at low temperatures

At low temperatures, the specific heat vary like Cv ∝ (mΘ/m)T
where mΘ is a thermal effective mass
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Neutron specific heat at low temperatures

At low temperatures, the specific heat vary like Cv ∝ (mΘ/m)T
where mΘ is a thermal effective mass
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⇒ very sensitive to the presence of the clusters !
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Conclusion

The validity of the W-S approximation depends on
the energy scale δE :

reasonable if δE & ~
2/2mR2

cell ∼ 0.1 MeV

otherwise the full band theory is required.

⇒ hot (T & 109 K) dense matter in young neutron stars and in
supernovae.

Main limitations for application to cold dense matter :

choice of boundary conditions ⇒ uncertainties on the
structure, spurious fluctuations of observables

restricted to spherical clusters ⇒ cannot describe pastas

finite box size ⇒ impossible to study transport properties.

Validity of the W-S approximation for pairing effects ?


