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Punchline

Superfluidity in the crust of a
neutron star may leave its imprint
on various observed astrophysical
phenomena, such as

pulsar sudden spin-ups
(frequency ’glitches’),
thermal relaxation in
transiently accreting neutron
stars,
quasiperiodic oscillations in
magnetars.



Prelude

The inner crust of a neutron star is made of neutron-proton clusters
immersed in a neutron liquid. The average density is rather low
(about half saturation density at most), but matter is inhomogeneous.

Chamel&Haensel, Living Reviews in Relativity 11 (2008), 10
http://relativity.livingreviews.org/Articles/lrr-2008-10/



Superfluidity in neutron-star crusts:
theoretical challenges

Describing superfluidity in neutron-star crusts requires a unified
understanding of nuclear pairing in both atomic nuclei and infinite
homogeneous nuclear matter.

Because of inhomogeneities, microscopic
calculations based on realistic interactions
are currently not feasible.

State-of-the-art calculations rely on the
self-consistent nuclear energy density
functional (EDF) theory.

This EDF theory provides a consistent and
numerically tractable treatment of nuclear
clusters and unbound neutrons.

Schuetrumpf et al., PRC87, 055805 (2013)



Outline

1 Nuclear energy density functionals for astrophysics
. nuclear energy density functional theory
. fitting protocole of the Brussels-Montreal functionals
. towards a better treatment of nuclear pairing (BSk16-32)

2 Applications to neutron-star crusts
. role of nuclear pairing on the equilibrium composition
. neutron superfluidity
. collective excitations



Nuclear energy density functional theory in a nut shell
The energy E is expressed as a functional of the “normal” and
“abnormal” density matrices:

nq(rrr , σ; r ′r ′r ′, σ′) =< Ψ|cq(r ′r ′r ′σ′)†cq(rrrσ)|Ψ >,
ñq(rrr , σ; r ′r ′r ′, σ′) = −σ′ < Ψ|cq(r ′r ′r ′ − σ′)cq(rrrσ)|Ψ >

where cq(rrrσ)† and cq(rrrσ) are the creation and destruction operators
for nucleon of type q (q = n,p for neutrons, protons) at position rrr with
spin σ (σ = ±1 for spin up and down).

In turn the density matrices can be expressed in terms of the
quasiparticle wave functions ϕ(q)

1k (rrr) and ϕ(q)
2k (rrr) as

nq(rrr , σ; r ′r ′r ′, σ′) =
∑
k(q)

ϕ
(q)
2k (rrr , σ)ϕ

(q)
2k (r ′r ′r ′, σ′)∗

ñq(rrr , σ; r ′r ′r ′, σ′) = −
∑
k(q)

ϕ
(q)
2k (rrr , σ)ϕ

(q)
1k (r ′r ′r ′, σ′)∗ = −

∑
k

ϕ
(q)
1k (rrr , σ)ϕ

(q)
2k (r ′r ′r ′, σ′)∗.

The exact ground-state energy can be obtained by minimizing the
energy functional E [nq(rrr , σ; r ′r ′r ′, σ′), ñq(rrr , σ; r ′r ′r ′, σ′)] under the constraint
of fixed nucleon numbers.
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ñq(rrr , σ; r ′r ′r ′, σ′) = −σ′ < Ψ|cq(r ′r ′r ′ − σ′)cq(rrrσ)|Ψ >

where cq(rrrσ)† and cq(rrrσ) are the creation and destruction operators
for nucleon of type q (q = n,p for neutrons, protons) at position rrr with
spin σ (σ = ±1 for spin up and down).

In turn the density matrices can be expressed in terms of the
quasiparticle wave functions ϕ(q)

1k (rrr) and ϕ(q)
2k (rrr) as

nq(rrr , σ; r ′r ′r ′, σ′) =
∑
k(q)

ϕ
(q)
2k (rrr , σ)ϕ

(q)
2k (r ′r ′r ′, σ′)∗
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of fixed nucleon numbers.



Nuclear energy density functional theory in a nut shell
In the simplest cases, E is written as the integral of a local functional

E =

∫
E
[
nq(rrr),∇∇∇nq(rrr), τq(rrr),JJJq(rrr), ñq(rrr)

]
d3rrr

where

nq(rrr) =
∑
σ=±1

nq(rrr , σ; rrr , σ)

τq(rrr) =
∑
σ=±1

∫
d3r ′r ′r ′ δ(rrr − r ′r ′r ′)∇∇∇ ·∇′∇′∇′nq(rrr , σ; r ′r ′r ′, σ)

JJJq(rrr) = −i
∑

σ,σ′=±1

∫
d3r ′r ′r ′ δ(rrr − r ′r ′r ′)∇∇∇nq(rrr , σ; r ′r ′r ′, σ′)× σσ′σ

ñq(rrr) =
∑
σ=±1

ñq(rrr , σ; rrr , σ)

and σσσ′ denotes the Pauli spin matrices.

Duguet, Lecture Notes in Physics 879 (Springer-Verlag, 2014), p. 293
Dobaczewski & Nazarewicz, in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.40-60



Nuclear energy density functional theory in a nut shell

Minimizing E
[
ϕ

(q)
1k (rrr), ϕ

(q)
2k (rrr)

]
under the constraint of fixed nucleon

numbers leads to the Hartree-Fock-Bogoliubov equations:

∑
σ′

(
hq(rrr)σσ′ ∆q(rrr)δσσ′

∆q(rrr)δσσ′ −hq(rrr)σσ′

)(
ϕ

(q)
1k (rrr , σ′)

ϕ
(q)
2k (rrr , σ′)

)
= Ek

(
ϕ

(q)
1k (rrr , σ)

ϕ
(q)
2k (rrr , σ)

)

hq(rrr)σ′σ ≡ −∇∇∇ ·
δE

δτq(rrr)
∇∇∇δσσ′ +

δE
δnq(rrr)

δσσ′ − i
δE

δJJJq(rrr)
· ∇∇∇× σσσσ′σ − µqδσσ′ ,

µq are the nucleon chemical potentials,

∆q(rrr) ≡ δE
δñq(rrr)

is called the pair potential or the pairing field.

With suitable boundary conditions, these equations can not only
describe the bulk neutron superfluid in neutron-star crusts, but also
quantized vortices.



Effective nuclear energy density functional

In principle, the nuclear functional could be inferred from
realistic interactions (i.e. fitted to experimental NN phase
shifts) using many-body methods

E =
~2

2M
(τn + τp) + A(nn,np) + B(nn,np)τn + B(np,nn)τp

+C(nn,np)(∇nn)2 + C(np,nn)(∇np)2 + D(nn,np)(∇nn) · (∇np)

+ Coulomb, spin-orbit and pairing
Drut,Furnstahl and Platter,Prog.Part.Nucl.Phys.64(2010)120.

But this is a very difficult task so in practice,
phenomenological functionals are employed.
Bender,Heenen and Reinhard,Rev.Mod.Phys.75, 121 (2003).
Bulgac in “50 years of Nuclear BCS” (World Scientific Publishing, 2013),
pp.100-110
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Effective nucleon-nucleon interactions

Semi-local functionals can be constructed from Skyrme effective
nucleon-nucleon interactions of the form

vij = t0(1 + x0Pσ)δ(rrr ij ) +
1
2

t1(1 + x1Pσ)
1
~2

[
p2

ij δ(rrr ij ) + δ(rrr ij ) p2
ij
]

+t2(1 + x2Pσ)
1
~2 pppij .δ(rrr ij )pppij +

1
6

t3(1 + x3Pσ)ρ(rrr)α δ(rrr ij )

+
i
~2 W0(σi + σj ) · pppij × δ(rrr ij )pppij

using the “mean-field” approximation, where rrr ij = rrr i − rrr j ,
rrr = (rrr i + rrr j )/2, pppij = −i~(∇∇∇i −∇∇∇j )/2 is the relative momentum, and
Pσ is the two-body spin-exchange operator.

The parameters ti , xi , α, W0 are fitted to some experimental and/or
microscopic nuclear data.

Remark: fitting directly the energy functional E (to nuclear-matter
calculations for instance) may lead to self-interaction errors.
Chamel, Phys. Rev. C 82, 061307(R) (2010).



Brussels-Montreal Skyrme functionals (BSk)

These functionals were fitted to both experimental data and N-body
calculations using realistic forces.

Experimental data:
all atomic masses with Z ,N ≥ 8 from the Atomic Mass
Evaluation (root-mean square deviation: 0.5-0.6 MeV)
http://www.astro.ulb.ac.be/bruslib/

charge radii
incompressibility Kv = 240± 10 MeV (ISGMR)
Colò et al., Phys.Rev.C70, 024307 (2004).

N-body calculations using realistic forces:
equation of state of pure neutron matter
1S0 pairing gaps in nuclear matter
effective masses in nuclear matter

http://www.astro.ulb.ac.be/bruslib/


Phenomenological corrections for atomic nuclei
For atomic nuclei, we add the following corrections to the HFB energy:

Wigner energy

EW = VW exp

{
− λ

(
N − Z

A

)2}
+ V ′W |N − Z |exp

{
−

(
A
A0

)2}

VW ∼ −2 MeV, V ′W ∼ 1 MeV, λ ∼ 300 MeV, A0 ∼ 20
rotational and vibrational spurious collective energy

Ecoll = E crank
rot

{
b tanh(c|β2|) + d |β2| exp{−l(|β2| − β0

2)2}
}

This latter correction was shown to be in good agreement with
calculations using 5D collective Hamiltonian.
Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010).

In this way, these collective effects do not contaminate the
parameters (≤ 20) of the functional.



Brussels-Montreal Skyrme functionals
Main features of the latest functionals:
Chamel et al., Acta Phys. Pol. B46, 349(2015)

. fit to realistic 1S0 pairing gaps (no self-energy) (BSk16-17)
Chamel, Goriely, Pearson, Nucl.Phys.A812,72 (2008)
Goriely, Chamel, Pearson, PRL102,152503 (2009).

. removal of spurious spin-isospin instabilities (BSk18)
Chamel, Goriely, Pearson, Phys.Rev.C80,065804(2009)

. fit to realistic neutron-matter equation of state (BSk19-21)
Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010)

. fit to different symmetry energies (BSk22-26)
Goriely, Chamel, Pearson, Phys.Rev.C88,024308(2013)

. optimal fit of the 2012 AME - rms 0.512 MeV (BSk27*)
Goriely, Chamel, Pearson, Phys.Rev.C88,061302(R)(2013)

. generalized spin-orbit coupling (BSk28-29)
Goriely, Nucl.Phys.A933,68(2015).

. fit to realistic 1S0 pairing gaps with self-energy (BSk30-32)
Goriely, Chamel, Pearson, to appear in Phys.Rev. C



Empirical pairing energy density functionals
The pairing functional is generally assumed to be local and very often
parametrized as

Epair =

∫
d3r Epair(rrr) , Epair =

1
4

∑
q=n,p

vπq[nn,np]ñ2
q

vπq[nn,np] = V Λ
πq

(
1− ηq

(
n
n0

)αq)
with a suitable cutoff prescription (regularization).
Bertsch & Esbensen, Ann. Phys. 209, 327 (1991).

V Λ
πq is usually fitted to the average gap in 120Sn. However, this does

not allow for an unambiguous determination of ηq and αq . Systematic
studies of nuclei seem to favor ηq ∼ 0.5 and 0.5 . αq . 1.

Drawbacks for astrophysical applications
This kind of functionals do not have enough flexibility to fit realistic
pairing gaps in finite nuclei and in infinite nuclear matter.
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Pairing functionals from nuclear-matter calculations

Instead of postulating a specific form for vπq[nn,np], we fit exactly
realistic 1S0 pairing gaps ∆q(nn,np) in infinite homogeneous nuclear
matter for each densities nn and np.

Inverting the HFB equations in nuclear matter for a given pairing gap
function ∆q thus yields (s.p. energy cutoff εΛ above the Fermi level):

vπq = −8π2
(

~2

2M∗q

)3/2
∫ µq+εΛ

0

√
εdε√

(ε− µq)2 + ∆2
q

−1

~2

2M∗q
≡ δE
δτq

Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008).
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Analytical expression of the pairing strength

In the “weak-coupling approximation” ∆q � µq and ∆q � εΛ,

vπq = − 8π2

√
µq

(
~2

2M∗q

)3/2 [
2 log

(
2µq

∆q

)
+ Λ

(
εΛ

µq

)]−1

Λ(x) = log(16x) + 2
√

1 + x − 2 log
(

1 +
√

1 + x
)
− 4

µq =
~2

2M∗q
(3π2nq)2/3

Chamel, Phys. Rev. C 82, 014313 (2010)

one-to-one correspondence between pairing in nuclei and
homogeneous nuclear matter
no free parameters apart from the cutoff
automatic renormalization of the pairing strength with εΛ
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Accuracy of the weak-coupling approximation

This approximation remains very accurate at low densities because
the s.p. density of states is not replaced by a constant as in the usual
“weak-coupling approximation”. Example with HFB-17:

symmetric nuclear matter
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Chamel, Phys. Rev. C 82, 014313 (2010)



Pairing cutoff and experimental phase shifts
In the limit of vanishing density, the pairing strength

vπq[nn,np → 0] = − 4π2
√
εΛ

(
~2

2Mq

)3/2

should coincide with the bare force in the 1S0 channel.

A fit to the experimental 1S0 NN phase shifts yields εΛ ∼ 7− 8 MeV.
Esbensen et al., Phys. Rev. C 56, 3054 (1997).
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The fit to nuclear masses leads to a non
monotonic dependence of the rms error
on the cutoff.
Chamel et al., in ”50 Years of Nuclear BCS”
(World Scientific Publishing Company, 2013),
pp.284-296

For the functionals BSk16-BS29, optimum mass fits were obtained
with εΛ ∼ 16 MeV, while we found εΛ ∼ 6.5 MeV for BSk30-32.



Pairing gaps from contact interactions

The “weak-coupling approximation” provides an accurate expression
of the pairing gaps in homogeneous matter from any given contact
interaction:

∆ = 2µexp

(
2

g(µ)vπreg

)
µ is the chemical potential, g(µ) is the density of s. p. states and vπreg
is a regularized interaction

1
vπreg

=
1

vπ
+

1
vπΛ

vπΛ =
4

g(µ)Λ(εΛ/µ)



Other contributions to pairing in finite nuclei

Pairing in finite nuclei is not expected to be the same as in infinite
nuclear matter because of

Coulomb and charge symmetry breaking effects,
polarization effects in odd nuclei (we use the equal filling
approximation),
coupling to surface vibrations.

In an attempt to account for these effects, we include an additional
phenomenological term in the pairing functional (only for BSk30-32)

vπ q → vπ q + κq |∇∇∇n|2

and we introduce renormalization factors f±q

vπ q −→ f±q vπ q ,

Typically f±q ' 1− 1.2 and f−q > f +
q , and κq < 0.
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1S0 pairing gaps in nuclear matter

For consistency, we considered the gaps obtained from extended
BHF calculations since effective masses as well as equations of state
have been also calculated with this approach.
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For comparison, we fitted
functionals to different
approximations for the gaps:

BCS: BSk16
polarization+free spectrum:
BSk17-BSk29
polarization+self-energy:
BSk30-32.

Cao et al.,
Phys.Rev.C74,064301(2006)



Nucleon effective masses
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Effective masses obtained with our
functionals are consistent with
giant resonances in finite nuclei
and many-body calculations in
infinite nuclear matter.

This was achieved using
generalized Skyrme interactions
with density dependent t1 and t2
terms, initially introduced to
remove spurious instabilities.
Chamel, Goriely, Pearson,
Phys.Rev.C80,065804(2009)

EBHF calculations from Cao et al.,Phys.Rev.C73,014313(2006).



Neutron-matter equation of state

The neutron-matter equation of state obtained with our functionals are
consistent with microscopic calculations using realistic interactions:



Applications to Neutron-Star Crusts



Description of neutron star crust below neutron drip

Main assumptions:
atoms are fully pressure ionized ρ� 10AZ g cm−3

the crust is a solid crystal

T < Tm ≈ 1.3× 105Z 2
(ρ6

A

)1/3
K ρ6 ≡ ρ/106 g cm−3

electrons are uniformly distributed and are highly degenerate
T < TF ≈ 5.93× 109(γr − 1) K

γr ≡
√

1 + x2
r , xr ≡

pF

mec
≈ 1.00884

(
ρ6Z
A

)1/3

matter is fully catalyzed

The only microscopic inputs are nuclear masses. We have made
use of the experimental data (Atomic Mass Evaluation)
complemented with our HFB mass tables.

Pearson,Goriely,Chamel,Phys.Rev.C83,065810(2011).



Composition of the outer crust of a neutron star

Sequence of equilibrium nuclides with increasing depth:
HFB-30 HFB-31 HFB-32

56Fe 56Fe 56Fe
62Ni 62Ni 62Ni
64Ni 64Ni 64Ni
66Ni 66Ni 66Ni
86Kr 86Kr 86Kr
84Se 84Se 84Se
82Ge 82Ge 82Ge
80Zn 80Zn 80Zn
78Ni 78Ni 78Ni
80Ni - 80Ni

126Ru 126Ru -
124Mo 124Mo 124Mo
122Zr 122Zr 122Zr
121Y 121Y 121Y
120Sr 120Sr 120Sr
122Sr 122Sr 122Sr
124Sr - 124Sr

Predominance of even-even nuclei due to
pairing.

Deeper (below ∼ 200 m for a 1.4M� neutron
star with a 10 km radius) the composition is
more model-dependent. Measurements of
neutron-rich nuclei are crucially needed.

Pearson,Goriely,Chamel,Phys.Rev.C83,065810.
Wolf et al.,PRL110,041101.



Neutron-drip transition: general considerations
With increasing pressure, nuclei become progressively more neutron
rich until neutrons start to drip out.

At this point, nuclei are actually stable against neutron emission
but are unstable against electron captures accompanied by neutron
emission A

Z X + ∆Ze− →A−∆N
Z−∆Z Y + ∆N n + ∆Z νe

nonaccreting neutron stars
According to the cold catalyzed matter hypothesis, all kinds of
reactions are allowed: the ground state is reached for ∆Z = Z
and ∆N = A.
accreting neutron stars
Multiple electron captures are very unlikely therefore ∆Z = 1
(∆N ≥ 1). The dripping nucleus A

Z X is such that A
Z−1Y is unstable

against neutron emission.

ρdrip and Pdrip can be expressed by simple analytical formulas.
Chamel, Fantina, Zdunik, Haensel, Phys. Rev. C91,055803(2015).
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Neutron-drip transition in unmagnetized neutron stars
nonaccreting neutron stars

outer crust drip line ρdrip (g cm−3) Pdrip (dyn cm−2)

HFB-19 126Sr (0.73) 121Sr (-0.62) 4.40 × 1011 7.91 × 1029

HFB-20 126Sr (0.48) 121Sr (-0.71) 4.39 × 1011 7.89 × 1029

HFB-21 124Sr (0.83) 121Sr (-0.33) 4.30 × 1011 7.84 × 1029

accreting neutron stars
With HFB-21:

A Z ∆N ρdrip−acc (1011 g cm−3) Pdrip−acc (1029 dyn cm−2)
104 32 1 4.85 9.31
105 33 1 3.42 6.01
68 22 1 4.13 8.12
64 20 3 5.84 12.3
72 22 1 5.35 10.6
76 24 1 5.02 10.2
98 32 1 3.42 6.33

103 33 1 2.83 4.79
106 34 1 3.65 6.72
66 22 1 3.58 6.98
64 20 3 5.84 12.3
60 20 1 3.36 6.43



Neutron drip transition in magnetars

The neutron drip density exhibits typical quantum oscillations.

Example using HFB-24:
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These oscillations are almost
universal:

ρmin
drip

ρdrip(B? = 0)
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ρmax
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In the strongly quantizing regime,

ρdrip ≈
A
Z

m
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e
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e
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Chamel et al.,Phys.Rev.C91, 065801(2015).



Description of neutron star crust beyond neutron drip
Extended Thomas-Fermi+Strutinsky Integral (ETFSI) approach:

τq(rrr) and JqJqJq(rrr) are expanded into nq(rrr) and its gradients
minimization of the energy yields

λq =
δE

δnq(r)
whose solutions are ñq(rrr) and E [ñq(rrr)] = EETF

proton shell effects are added perturbatively using the Strutinsky
integral theorem E ≈ EETF + δEp (neutron shell effects are
expected to be mucher smaller, |δEn| � |δEp|)

δEp =
∑

k

v2
k εk −

∫
d3rrr
{

~2

2M̃p
?
(rrr)

τ̃p(rrr) + ñp(rrr)Ũp(rrr) + J̃pJpJp(rrr) · W̃pWpWp(rrr)

}
−
∑

k

∆2
k

4Ek

where
{
−∇∇∇ · ~2

2M̃p
?
(rrr)
∇∇∇+ Ũp(rrr)− iW̃pWpWp(rrr) · ∇∇∇× σσσ

}
ϕk (rrr) = εkϕk (rrr)

Ek =
√

(εk − λp)2 + ∆2
k , v2

k =
1
2

(
1− εk − λp

Ek

)
∆k = −1

4

∑
l

v̄ pair
kk̄,l l̄

∆l

El



Description of neutron star crust beyond neutron drip
In order to further speed-up the calculations, we make the following
approximations:

neutron-proton clusters are spherical and nq(rrr) are parametrized
as nq(r) = nBq + nΛq fq(r) , where

fq(r) =
1

1 + exp
{(

Cq−R
r−R

)2
− 1
}

exp
(

r−Cq
aq

)
the lattice energy is computed using the Wigner-Seitz method,
electrons are uniformly distributed.

Pearson,Chamel,Pastore,Goriely,Phys.Rev.C91, 018801 (2015).
Pearson,Chamel,Goriely,Ducoin,Phys.Rev.C85,065803(2012).

Advantages of the ETFSI method:
very fast approximation to the full HF+BCS equations
avoids the difficulties related to boundary conditions
Chamel et al.,Phys.Rev.C75(2007),055806.



Role of proton pairing on the composition of the inner
crust of a neutron star

Proton shell effects are washed out due to pairing.
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Example with BSk21.

At low densities, Z = 42 is
energetically favored over
Z = 40, but by less than
5× 10−4 MeV per nucleon.

A large range of values of
Z could thus be present in
a real neutron-star crust.

Pearson,Chamel,Pastore,Goriely,Phys.Rev.C91, 018801 (2015).

Due to proton pairing, the inner crust of a neutron star is expected to
contain many impurities.



Neutron superfluidity in neutron-star crusts:
Wigner-Seitz approach

Superfluidity has been already studied with the
HFB method using the Wigner-Seitz
approximation. However, this approach breaks
down in the deep region of the crust
Chamel et al., Phys.Rev.C75(2007)055806.
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can be very large at the crust
bottom and are enhanced by the
self-consistency.
Baldo et al., EPJA32,97(2007).

These limitations can be overcome by using the band theory of solids.
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Band theory
Floquet-Bloch theorem

I found to my delight that the wave differed from the plane
wave of free electrons only by a periodic modulation.

Bloch, Physics Today 29 (1976), 23-27.

The single-particle wave functions can be
expressed as

ϕαkkk (rrr) = ei kkk·rrr uαkkk (rrr)

where uαkkk (rrr + `̀̀) = uαkkk (rrr) and `̀̀ are lattice vectors.

α (band index) accounts for the rotational symmetry around each
lattice site,
kkk (wave vector) accounts for the translational symmetry of the
crystal.

Chamel, Goriely, Pearson, in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.284-296.
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Band theory
By symmetry, the crystal can be partitioned into identical primitive
cells. The HFB equations need to be solved only inside one cell.

The shape of the cell depends on the crystal symmetry

Example : body centered
cubic lattice

The boundary conditions are fixed by the Floquet-Bloch theorem

ϕαkkk (rrr + `̀̀) = ei kkk ·̀`̀ϕαkkk (rrr)

kkk can be restricted to the first Brillouin zone (primitive cell of the
reciprocal lattice) since for any reciprocal lattice vector KKK

ϕαkkk+KKK (rrr) = ϕαkkk (rrr)
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Example of neutron band structure

Discrete energy levels are replaced by energy bands in kkk -space.

Example: body-centered cubic crystal of zirconium like clusters with
N = 160 (70 unbound) and ρ̄ = 7× 1011 g.cm−3

W-S approximation
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Neutron superfluidity in neutron-star crusts:
band theory

In the deep layers of neutron-star crusts, the spatial fluctuations of
∆(rrr) are small compared to those of ϕαkkk (rrr) so that∫

d3rrr ϕ∗αkkk (rrr)∆(rrr)ϕβkkk (rrr) ≈ δαβ
∫

d3rrr |ϕαkkk (rrr)|2∆(rrr) .

In this decoupling approximation, the Hartree-Fock-Bogoliubov
equations reduce to the multi-band BCS equations:

∆αkkk = −1
2

∑
β

∫
d3k ′k ′k ′

(2π)3 v̄pair
αkkkα−kkkβk ′k ′k ′β−k ′k ′k ′

∆βk ′k ′k ′

Eβk ′k ′k ′
tanh

Eβk ′k ′k ′

2kBT

v̄pair
αkkkα−kkkβk ′k ′k ′β−k ′k ′k ′ =

∫
d3r vπ[ρn(rrr), ρp(rrr)] |ϕαkkk (rrr)|2|ϕβk ′k ′k ′(rrr)|2

Eαkkk =
√

(εαkkk − µ)2 + ∆2
αkkk

εαkkk , µ and ϕαkkk (rrr) are obtained from band structure calculations using
the ETFSI mean fields

Chamel et al., Phys.Rev.C81,045804 (2010).
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Analogy with terrestrial multi-band superconductors

Multi-band superconductors were first studied by Suhl et al. in 1959
but clear evidence were found only in 2001 with the discovery of
MgB2 (two-band superconductor)

In neutron-star crusts,
the number of bands can be huge ∼ up to a thousand!
both intra- and inter-band couplings must be taken into account



Neutron pairing gaps

Results obtained for BSk16
nf

n is the density of unbound neutrons
∆u is the gap in neutron matter at density nf

n

∆̄u is the gap in neutron matter at density nn

n̄ [fm−3] Z A nf
n [fm−3] ∆F [MeV] ∆u [MeV] ∆̄u [MeV]

0.07 40 1218 0.060 1.44 1.79 1.43
0.065 40 1264 0.056 1.65 1.99 1.65
0.06 40 1260 0.051 1.86 2.20 1.87

0.055 40 1254 0.047 2.08 2.40 2.10
0.05 40 1264 0.043 2.29 2.59 2.33

∆αkkk (T )/∆αkkk (0) is a universal function of T
The critical temperature is approximately given by the usual BCS
relation Tc ' 0.567∆F

the nuclear clusters lower the gap by 10− 20%



Pairing field and local density approximation
The effects of inhomogeneities on neutron superfluidity can be
directly seen in the pairing field

∆n(rrr) = −1
2

vπn[nn(rrr),np(rrr)]
∑
α

∫
d3kkk

(2π)3 |ϕαkkk (rrr)|2 ∆αkkk

Eαkkk

Neutron pairing field for n̄ = 0.06 fm−3 at T = 0:
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The superfluid permeates the clusters due to proximity effects.



Pairing field at finite temperature

The neutron pairing field is now given by

∆n(rrr) = −1
2

vπn[nn(rrr),np(rrr)]ñn(rrr) , ñn(rrr) =
Λ∑
α,kkk

|ϕαkkk (rrr)|2 ∆αkkk

Eαkkk
tanh

Eαkkk

2T

Neutron pairing field for n̄ = 0.06 fm−3:

The superfluid becomes more and
more homogeneous as T
approaches Tc
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Chamel et al., Phys.Rev.C81(2010)045804.



Impact of the pairing cutoff

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
r [fm]

0.8

1

1.2

1.4

1.6

1.8

2

∆
(r

) 
 [

M
e
V

] 32 MeV
16 MeV
8 MeV
4 MeV
1 MeV

ρ = 0.07 fm
-3

(a)

0 1 2 3 4 5 6 7 8 9 10 1112 1314 1516 17 18
r [fm]

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

∆
(r

) 
 [

M
e
V

] 32 MeV
16 MeV
8 MeV
4 MeV
1 MeV

ρ = 0.05 fm
-3

(e)

n̄ [fm−3] ∆F0(16) [MeV] ∆F0(8) ∆F0(4) ∆F0(2) ∆F0(1)
0.070 1.39 1.38 1.37 1.36 1.29
0.050 2.27 2.25 2.27 2.26 2.24

Pairing gaps (hence also critical temperatures) are very weakly
dependent on the pairing cutoff.



Impact on thermodynamic quantities : specific heat
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The neutron specific heat is
exponentially suppressed at
T < Tc as in pure neutron matter.

Band structure effects are small (id. for normal neutrons).
Chamel et al, Phys. Rev. C 79, 012801(R) (2009)

The renormalization of Tc comes from the density dependence of
the pairing strength.
Chamel et al., Phys.Rev.C81(2010)045804.

Generic interpolating formula valid for any temperature:
Pastore, Chamel, Margueron, MNRAS 448, 1887 (2015).



Bragg scattering and entrainment

For decades, neutron diffraction experiments
have been routinely performed to explore the
structure of materials.

The main difference in neutron-star crusts is
that neutrons are highly degenerate

A neutron with wavevector kkk can be
coherently scattered if d sin θ = Nπ/k ,
where N = 0,1,2, ... (Bragg’s law).

In this case, it does not propagate in the
crystal: it is therefore entrained!

Bragg scattering occurs if k > π/d . In neutron stars, neutrons have
momenta up to kF . Typically kF > π/d in all regions of the inner crust
but the shallowest.
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How “free” are neutrons in neutron-star crusts?

Only some “conduction” neutrons contribute to the neutron current:

nc
n =

mn

24π3~2

∑
α

∫
F
|∇∇∇kkkεαkkk |dS(α) ≤ nf

n , m?
n = mn

nf
n

nc
n
≥ mn

Chamel, PhD thesis, Université Paris 6, France (2004)
Carter, Chamel, Haensel, Nucl. Phys. A748, 675 (2005)
Pethick, Chamel, Reddy, Prog.Theor.Phys.Sup.186(2010)9.

n̄ (fm−3) nf
n/nn (%) nc

n/nf
n (%)

0.0003 20.0 82.6
0.001 68.6 27.3
0.005 86.4 17.5
0.01 88.9 15.5
0.02 90.3 7.37
0.03 91.4 7.33
0.04 88.8 10.6
0.05 91.4 30.0
0.06 91.5 45.9

n̄ is the average baryon density
nn is the total neutron density
nf

n is the “free” neutron density
nc

n is the “conduction” neutron density

In many layers, most neutrons are
entrained by the crust!
Chamel,Phys.Rev.C85,035801(2012)



Entrainment and collective excitations

Entrainment impacts low-energy collective excitations:

clusters are effectively heavier,
longitudinal excitations are mixed.

Chamel,Page,Reddy,Phys.Rev.C87,035803(2013)
Chamel,Page,Reddy,J.Phys. Conf.Ser.665, 012065 (2016).
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Entrainment and collective excitations

Entrainment impacts low-energy collective excitations:

it makes clusters heavier,
it mixes longitudinal excitations.

Chamel,Page,Reddy,Phys.Rev.C87,035803(2013)
Chamel,Page,Reddy,J.Phys. Conf.Ser.665, 012065 (2016).
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Entrainment and thermal properties

The contribution of collective excitations to the specific heat at low T
varies like (kBT/~v)3. Since entrainment reduces v , the specific heat
is enhanced.

Contributions to the crustal specific heat at T = 107 K :
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Entrainment and thermal properties

The contribution of collective excitations to the specific heat at low T
varies like (kBT/~v)3. Since entrainment reduces v , the specific heat
is enhanced.

Contributions to the crustal specific heat at T = 108 K :

10
12

10
13

10
14

ρ [g cm
-3

]

-11

-10

-9

-8

-7

-6

-5

-4

lo
g

1
0
 C

V
 [

fm
-3

]

n

tph

e

sph

+

lph

-

n normal neutrons
e electrons
tph transverse lattice phonons
lph longitudinal lattice phonons
(without mixing)
sph superfluid phonons (without
mixing)
± longitudinal mixed modes



Entrainment and thermal properties

The contribution of collective excitations to the specific heat at low T
varies like (kBT/~v)3. Since entrainment reduces v , the specific heat
is enhanced.

Contributions to the crustal specific heat at T = 109 K :
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Entrainment and thermal properties
Changes in phonon velocities alter the electron-phonon scattering
hence also the (electron) thermal conductivity.

All in all, entrainment leads to an increase of the thermal relaxation
time of the crust.

2

10
14

10
13

10
12

[g cm   ]−3ρ

1000

100

10

1

0.1

0.01

0.001

9.0

8.5

8.0

7.5

7.0

log   T  [K] =

κ

10

e
C

  
/ 

  
  
[y

r/
k
m

  
]

V

Thermal properties were
calculated for catalyzed crusts;
they may be different for accreted
crusts.



Conclusions&Perspectives

We have developed a series of accurately calibrated nuclear energy
density functionals with an improved treatment of pairing (BSk30-32).

These functionals are well-suited for describing extreme astrophysical
environments like neutron stars.

Due to proton pairing, the crust of a neutron star is likely to contain an
admixtures of various kinds of nuclei.

Spatial inhomogeneities have a substantial impact on neutron
superfluidity in the inner crust (entrainment).

Perspectives: role of neutron pairing on the crust structure, role of
impurities and defects on neutron superfluidity, transport properties.



Spin and spin-isospin instabilities
BSk18-32 are devoid of spurious long-wavelength instabilities.
Chamel, Goriely, Pearson, Phys.Rev.C80,065804(2009)
Chamel & Goriely, Phys.Rev.C82, 045804 (2010)

Finite-size instabilities are suppressed: e.g. neutron matter
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Symmetric nuclear-matter equation of state
Our functionals are also in good agreement with empirical constraints
inferred from heavy-ion collisions:

Danielewicz et al., Science 298, 1592 (2002)
Lynch et al., Prog. Part. Nuc. Phys.62, 427 (2009)



Symmetry energy
The values for the symmetry energy J and its slope L obtained with
our functionals are consistent with various experimental constraints
(the dashed line delimits the values from 30 different HFB atomic
mass models with rms < 0.84 MeV)
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Figure adapted from Lattimer& Steiner, EPJA50,40(2014)



Latest Brussels-Montreal Skyrme functionals

The latest functionals BSk30-32 were fitted to 2353 nuclear masses
from the 2012 Atomic Mass Evaluation with Z ,N ≥ 8 following the
same protocole but with different symmetry energy coefficients J:

HFB-30 HFB-31 HFB-32
J [MeV] 30 31 32

σ(M) [MeV] 0.573 0.571 0.586
ε̄(M) [MeV] 0.003 -0.004 -0.007
σ(Mnr ) [MeV] 0.683 0.659 0.700
ε̄(Mnr ) [MeV] 0.038 -0.015 0.137
σ(Rc) [fm] 0.026 0.027 0.027
ε̄(Rc) [fm] 0.001 0.002 0.000

http://www.astro.ulb.ac.be/bruslib/

http://www.astro.ulb.ac.be/bruslib/

