SUMMER SCHOOL ARY STARS

University of Leuven, Belgium 10-15 September 2012

MAIN TOPICS

The binary zoo Observations and data analysis High-energy phenomena Theory of binary evolution Statistics of main-sequence binaries and substellar companions

EXTERNAL LECTURERS

Alain JORISSEN - Université Libre de Bruxelles, Belgius Tom MARSH - University of Warwick, UK Tsevi MAZEH - Tel Auly University, Israel Gijs NELEMANS - Radboud University Nürsegen, The Netherlands Lionel SIESS - Université Libre de Bruselles, Belgium

INFO www.tys.kuteuven.be/ster/summerschool - summerschoolifister.kuteuven.be SOC Christoffel WAELKENS - Steven BLOEMEN - Nadys GORLOVA - Roy OSTENSEN Background image & Grants R. Could a http://outnamiliaraportari.org

Photos Lauran O Pailor Public

The binary zoo

Alain Jorissen

Institut d'Astronomie et d'Astrophysique

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

SUMMER SCHOOL BINARY STARS University of Leuven, Belgium

10-15 September 2012

MAIN TOPICS

The binary zoo Observations and data analysis High-energy phenomena Theory of binary evolution Statistics of main-sequence binaries and subsegliar companions

EXTERINAL LECTURERS

Alain JORISSEN – Université Libre de Bruxelles, Belgium Tom MARSH – University of Warwick, UK Tsevi MAZEH – Tel Aniv University, Israel Gijs NELEMANS – Radboud University Nijmegen, The Netherlands Lionel SIESS – Université Libre de Bruxelles, Belgium

The binary zoo

Inventaire

Une pierre deux maisons trois ruines quatre: fossoyeurs un jardin des fleurs

une douzaine d'huîtres un citron un pain un rayon de soleil une lame de fond six musiciens une porte avec son paillasson un monsieur décoré de la légion d'honneur

J. Prévert un autre raton laveur

Ĥ

SUMMER SCHOOL BINARY STARS

10-15 September 2012

MAIN TOPICS

The binary zoo Observations and data analysis High-energy phenomena Theory of binary evolution Statistics of main-sequence binaries and subsegliar companions

EXTERNAL LECTURERS

Alain JORISSEN – Université Libre de Bruxelles, Belgium Tom MARSH – University of Warwick, UK Tsevi MAZEH – Tel Aniv University, Israel Gijs NELEMANS – Radboud University Nijmegen, The Netherlands Lionel SIESS – Université Libre de Bruxelles, Belgium

INFO www.tys.kuleuven.be/ster/summerschool - summerschool@ster.kuleuven.be SOC Chelefaltet WAELKENS - Steven BLOEMEN - Neetys GOPLOVN - Poy OSTENSEN

mann O Point Parties

The binary zoo

Inventaire

RS CVn W UMa Ba DQ Her S (no Tc) metal-deficient post-AGB CH

one Algol

CEMPs LMXRB novae SNIa symbiotics

A. Jorissen and another Algol

SUMMER SCHOOL BINARY STARS

10-15 September 2012

MAIN TOPICS

The binary zoo Observations and data analysis High-energy phenomena Theory of binary evolution Statistics of main-sequence binaries and subsectiar companions

EXTERNAL LECTURERS

Alain JORISSEN – Université Libre de Bruxelles, Belgium Torn MARSH – University of Warwick, UK Tsevi MAZEH – Tel Asiv University, Israel Gijs NELEMANS – Radboud University Nijmegen, The Netherlands Lionel SIESS – Université Libre de Bruxelles, Belgium

INFO www.lys.kuteuven.be/ster/summerschool - summerschool/Exter/Auleuven.be SOC Christoffal WAELKENS - Steven BLOEMEN - Nadya GOPLOVA - Poy OSTENSEN

Background Image & Lynetis R. Cook - Migh Redmandiersponent any

Photos Laurent O Priter Papine

Ĥ

The binary zoo

Conducting line :

Classification of binary stars

i) Mass transferii) Evolutionary stageiii) Observational properties

Classification of binary stars:

There are three possible ways to classify binary stars, based on:

i) Mass transferii) Evolutionary stageiii)Observational properties

[→ Lionel Siess, Gijs Nelemans]
 [→ Lionel Siess]
 [→ Tom Marsh, Tsevi Mazeh]

Classification of binary stars:

There are three possible ways to classify binary stars, based on:

i) Mass transferii) Evolutionary stageiii)Observational properties

[→ Lionel Siess, Gijs Nelemans]
 [→ Lionel Siess]
 [→ Tom Marsh, Tsevi Mazeh]

Knowing the location of the binary in all 3 schemes often is the goal of binary-star research !

= The 'guiding line' for my 5 lectures ...

Classification of binary stars

Contents

i) Mass transfer classes: detached, semi-detached, contact (WUMa)

Technical intermezzi about Roche lobes, mass-radius exponents, mass-transfer rates (Bondi-Hoyle), time scales (adiabatic, thermal, nuclear), stability of mass transfer [→ Lionel Siess]

ii) Evolutionary-stage classes

Two examples: - post-AGB stars - Barium stars

Technical intermezzo : Heavy-element synthesis

Eggleton's classification: evolutionary class and mass transfer modes A, B, C Important diagnostics of mass transfer modes: (a) eccentricity - period diagrams

- (b) mass-function distributions
 - → constraints on companion masses

→ The Algol paradox (Algols, β Lyr, SV Cen/ W Ser)

Classification of binary stars

Contents

iii) Observational-property classes [→ Tsevi Mazeh, Tom Marsh]
Technical intermezzo : Orbital elements
visual/interferometric, astrometric, spectroscopic (SB1, SB2)
Technical intermezzo : Masses
difficulties with spectroscopy : - the case of binaries involving long-period variables
- MACHO : the puzzle of sequence D (all ellipsoidal?)
photometric: (a) geometry (eclipses: Algols - β Lyr, ζ Aur - VV Cep, ellipsoidal : W UMa)
(b) dust (sequence D?, ε Aur)
(c) spots (RS CVn)
confusion between RS CVn and pre-main sequence binaries (e - P again)
(d) eruptive: [→ Tom Marsh]
(d.1) novae : MS + WD (slow mass accretion)
(d.2) dwarf novae and cataclysmic variables $[\rightarrow T. Marsh, G. Nelemans]$
MS + WD (fast mass accretion, accretion disk, magnetic
field or not)
DQ Her, AM Her
(d.3) symbiotics: giant + WD
(d.4) SNIa: WD + WD (?)

(e) X -rays : HMXRB (neutron stars, black holes), LMXRB = CV [→ G. Nelemans]

Classification of binary stars

i) Mass transfer

A technical parenthesis first about Roche lobes

Roche lobe (I)

The Roche model (E. Roche 1820–1883) of a binary system:

 \rightarrow binary system at rest in a frame corotating with the orbital motion.

In this frame, define effective equipotential surfaces for the gravitational potential corrected for centrifugal effects :

Roche lobe (II)

Roche lobe (III)

in units where the orbital period and separation are taken as unit time and distance, and total mass as unit mass.

Roche lobe (IV)

Critical surfaces whose intersection with the orbital plane form a figure eight = Roche lobes

$$R_{R,2}/a = \left\{ egin{array}{cc} 0.38 + 0.2 \log q, & 0.5 \leq q \leq 20, \\ 0.462 \left(rac{q}{1+q}
ight)^{1/3}, & 0 < q < 0.5, \end{array}
ight.$$

where $q = M_2/M_1$, and *a* is the orbital separation. Paczynski 1971, ARA&A 9, 183

An alternative expression, valid for all q, is

$$R_{R,2}/a = \frac{0.49 \ q^{2/3}}{0.6 \ q^{2/3} + \ln(1 + q^{1/3})}.$$

Eggleton, 1983, ApJ 268, 368

Roche lobe (IV)

Critical surfaces whose intersection with the orbital plane form a figure eight = Roche lobes

$$R_{R,2}/a = \begin{cases} 0.38 + 0.2 \log q, & 0.5 \le q \le 20\\ 0.462 \left(\frac{q}{1+q}\right)^{1/3}, & 0 < q < 0.5, \end{cases}$$

where $q = M_2/M_1$, and *a* is the orbital separation. Paczynski 1971, ARA&A 9, 183

Do not confuse radius of Roche lobe $R_{R,2}$ with distance between star(s) and L_1 :

 $r(M_1 \text{to } L_1) = a (0.50 + 0.227 \log q)$ $r(M_2 \text{to } L_1) = a (0.50 - 0.227 \log q)$

Classification of binary stars

common envelope

Classification of binary stars

i) Mass transfer

Mass transfer: a. Detached system a. wind accretion **b. Semi-detached system b.** Roche-lobe overflow c. Contact system a. Wind accretion Mo detached M semi-detached mass transfer Roche-lobe overflow Roche lobe (RLOF) common M_2 M envelope

1. Hoyle-Lyttleton formalism for a single star accreting matter flowing at a velocity v_{∞} , with gas pressure unimportant (hence cool gas):

Accretion radius: $v_{\infty}^2/2 = GM/R_{\rm H-L}$

Hoyle & Lyttleton 1939, Proc. Cam. Phil. Soc. 35, 405 Bondi 1952, MNRAS 114, 195 Bondi & Hoyle 1944, MNRAS 104, 273

1. Hoyle-Lyttleton formalism for a single star accreting matter flowing at a velocity v_{∞} , with gas pressure unimportant (hence cool gas):

Accretion radius: $v_{\infty}^2/2 = GM/R_{\rm H-L}$ Accretion rate:

 $\dot{M}_{\mathrm{H-L}} = \pi R_{\mathrm{H-L}}^2 v_{\infty} \rho_{\infty} = 2\pi \; \frac{(G \; M)^2}{v_{\infty}^3} \rho_{\infty}$

Note that there is no accretion of angular momentum because the tangential velocity components cancel out

Hoyle & Lyttleton 1939, Proc. Cam. Phil. Soc. 35, 405 Bondi 1952, MNRAS 114, 195 Bondi & Hoyle 1944, MNRAS 104, 273

1. Hoyle-Lyttleton formalism for a single star accreting matter flowing at a velocity v_{∞} , with gas pressure unimportant (hence cool gas):

Accretion radius: $v_{\infty}^2/2 = GM/R_{\rm H-L}$ Accretion rate:

 $\dot{M}_{\mathrm{H-L}} = \pi R_{\mathrm{H-L}}^2 v_{\infty} \rho_{\infty} = 2\pi \frac{(G M)^2}{v_{\infty}^3} \rho_{\infty}$

Hoyle & Lyttleton 1939, Proc. Cam. Phil. Soc. 35, 405 Bondi 1952, MNRAS 114, 195 Bondi & Hoyle 1944, MNRAS 104, 273 2. Bondi formalism for accretion dominated by gas pressure, with zero relative gas-star velocity:

Accretion radius: $c^2/2 = GM/R_B$ Accretion rate: $\dot{M}_B = \beta \pi R_B^2 c \rho_\infty$

where c = sound speed, β is a parameter of order unity depending on the polytropic index of the gas.

1. Hoyle-Lyttleton formalism for a single star accreting matter flowing at a velocity v_{∞} , with gas pressure unimportant (hence cool gas):

Accretion radius: $v_{\infty}^2/2 = GM/R_{\rm H-L}$ Accretion rate:

 $\dot{M}_{\rm H-L} = \pi R_{\rm H-L}^2 v_{\infty} \rho_{\infty} = 2\pi \ \frac{(G M)^2}{v_{\infty}^3} \rho_{\infty}$

Hoyle & Lyttleton 1939, Proc. Cam. Phil. Soc. 35, 405 Bondi 1952, MNRAS 114, 195 Bondi & Hoyle 1944, MNRAS 104, 273 2. Bondi formalism for accretion dominated by gas pressure, with zero relative gas-star velocity:

Accretion radius: $c^2/2 = GM/R_B$ Accretion rate: $\dot{M}_B = \beta \pi R_B^2 c \rho_\infty$

where c = sound speed, β is a parameter of order unity depending on the polytropic index of the gas.

3. Bondi-Hoyle formalism is an interpolation between these two extreme cases: Accretion rate:

$$\dot{M}_{\rm B-H} = \beta \pi R_{\rm H-L}^2 v_{\infty} \rho_{\infty} \left(\frac{(v_{\infty}/c)^2}{1 + (v_{\infty}/c)^2} \right)^{3/2}$$

In a binary system: • ρ_{∞} from $\dot{M}_{wind} = 4\pi r^2 \rho(r) v_{wind}$,

with r set to a

• v_{∞} replaced by $v_{\rm orb} + v_{\rm wind}$.

Thus:

$$\frac{\dot{M}_{acc}}{\dot{M}_{wind}} = -2\pi \frac{\beta}{a^2} \left(\frac{(G M_{acc})^2}{v_{wind}^2} \right)^2 \frac{1}{[1 + (v_{orb}/v_{wind})^2 + (c/v_{wind})^2]^{3/2}}$$

or using Kepler's third law:

$$\dot{M}_{\rm acc}/\dot{M}_{\rm wind} = -\beta\mu^2 \frac{k^4}{[1+k^2+(c/v_{\rm wind})^2]^{3/2}},$$

where $\mu \equiv M_{\rm accretor}/(M_{\rm accretor}+M_{\rm loser}), k = \frac{v_{\rm orb}}{v_{\rm wind}}$

• Fast winds (binaries with OB stars): $k \equiv v_{\rm orb}/v_{\rm wind} << 1$

Accretion column, tilted by an angle $\gamma = \arctan v_{wind} / v_{orb}$ with respect to the orbital motion, with matter falling onto the compact star from its rear side (as viewed from the mass-losing star) with a rate \dot{M}_{B-H}

• Fast winds (binaries with OB stars): $k \equiv v_{\rm orb}/v_{\rm wind} << 1$

Accretion column, tilted by an angle $\gamma = \arctan v_{wind} / v_{orb}$ with respect to the orbital motion, with matter falling onto the compact star from its rear side (as viewed from the mass-losing star) with a rate \dot{M}_{B-H}

• Slow winds (detached binary systems involving an AGB star): $k \equiv v_{orb}/v_{wind} >> 1$

Accretion column distorted by Coriolis effect, must be investigated numerically.

• Fast winds (binaries with OB stars): $k \equiv v_{\rm orb}/v_{\rm wind} << 1$

Accretion column, tilted by an angle $\gamma = \arctan v_{wind} / v_{orb}$ with respect to the orbital motion, with matter falling onto the compact star from its rear side (as viewed from the mass-losing star) with a rate \dot{M}_{B-H}

• Slow winds (detached binary systems involving an AGB star): $k \equiv v_{orb}/v_{wind} >> 1$

Accretion column distorted by Coriolis effect, must be investigated numerically. Accretion rates $\leq 0.1 M_{\rm B-H}$ Theuns & Jorissen 1993, MNRAS 265, 946 Mastrodemos & Morris 1998, ApJ 497, 303 Folini & Walder 2000, Ap&SS 274, 189 Nagae et al. 2004, A&A 419, 335 Jahanara et al., 2005, A&A 441, 589

• Slow winds (detached binary systems involving an AGB star): $k \equiv v_{orb}/v_{wind} >> 1$

Accretion column distorted by Coriolis effect, must be investigated numerically. Accretion rates $\leq 0.1 M_{B-H}$ Theuns & Jorissen 1993, MNRAS 265, 946 Mastrodemos & Morris 1998, ApJ 497, 303 Folini & Walder 2000, Ap&SS 274, 189 Nagae et al. 2004, A&A 419, 335 Jahanara et al., 2005, A&A 441, 589

'Spiral arm' feature has been observed in some binary systems: AFGL 3068, R Scl

mass transfer rates RLOF : $R = R_R$ conservative mass transfer $\dot{M}_{acc} = \dot{M}_{RLOF}$

 $\dot{M}_{\rm RLOF}$ is limited by the flow compression through the inner Lagrangian point, where it flows at sound speed with a rate:

$$-\dot{M}_{\mathrm{RLOF}} = \dot{M}_{\mathrm{loser}} e^{\left(\frac{-(R_R-R)}{H_P}\right)},$$

where H_P is the pressure scale height in the mass-donor star, \dot{M}_{loser} is a characteristic mass-loss rate of the donor.

Lubow & Shu 1975, ApJ 198, 383 Ritter 1988, A&A 202, 93 Kolb & Ritter 1990, A&A 236, 385

Classification of binary stars:

- i) Mass transfer

 a. Detached system
 b. Semi-detached system
 c. Contact system
- ii) Observational properties

a. Detached system

c. Contact system W UMa

Classification of binary stars:

There are three possible ways to classify binary stars, based on:

Classification of binary stars:

There are three possible ways to classify binary stars, based on:

iii) Evolutionary stage

There are three possible ways to classify binary stars, based on:

iii) Evolutionary stages, connected through stellar-evolution tracks [-> Siess]

There are three possible ways to classify binary stars, based on: iii) Evolutionary stage

A few examples of binaries defined by their evolutionary stages

iii) Evolutionary stage [peculiar] 'abundance' binary: - metal-depleted post-AGB star Sun's Post-Main Sequence Evolutionary Track Effective Temperature, K 7,000 6,000 30,000 10,000 4,000 -10--105 -8-Planetary Nebula stage -6--104 SUPERGIANTS (I) exposed core remnant -4cools rapidly and -103 to Sun -2flash contracts to white dwarf Absolute Magnitude, My GIANTS (II,III) -1028 He→C+O HB 0-2-N SEQUENCE (V) - 10 RGB - 10 - 1 Imminosity c 4 H→He Sun 6--101 8-**RGB** - Red Giant Branch HB - Horizontal Branch White Dwarf 10-AGB - Asymptotic Giant Branch stage - 102 Sirius B 12-- 10⁻³ 0 Procyon B 14-Colour Index (B - V) 104 +0.9 -0.5 +0.6 +0.8 0.0 +0.3 MO 05 FO ко BO A0 G0 Spectral Class

There are three possible ways to classify binary stars, based on:

[peculiar] 'abundance' binary: iii) Evolutionary stage - metal-depleted post-AGB star Sun's Post-Main Sequence Evolutionary Track Effective Temperature, K 30,000 10,000 7.000 6.000 4,000 -10--105 Planetary Nebula -8 stage -6--104 SUPERGIANTS (I) - K giant with strong barium lines exposed core remnant -4cools rapidly and -103 **[]= Barium star**] -2contracts to white dwarf S flash 8 Absolute Magnitude, My GIANTS (II,III) -1027 0-He→C 2-N SEQUENCE (V - 10 RGB ruminos 4 H→He Sun 6 - 101 RGB - Red Giant Branch White Dwarf HB - Horizontal Branch 10-AGB - Asymptotic Giant Branch - 102 stage Sirius B 12-- 10⁻³ Procyon B 14-Colour Index (B - V) 104 +0.9 -0.5 +0.6 +0.8 0.0 +0.3 FO KO 05 BO MO A0 G0 Spectral Class

Barium stars

Ba stars: A class of chemically-peculiar giants known since the 50's

Barium stars

Ba stars: A class of chemically-peculiar giants known since the 50's Chemical peculiarities attributed to mass transfer...

The binary zoo

Classification of binary stars:

i) Mass transferii) Observational propertiesiii)Evolutionary stage

A given binary has a location in each 3 classification schemes; however, often its classification is only known in 1 or 2 schemes:

Knowing the location of a binary (family) in all 3 schemes often is the goal of binary-star research !

Nice achievements in that respect have just been discussed : Post-AGB stars (KULeuven !) Barium and Tc-no S stars (ULB !) Knowing the location of a binary (family) in all 3 schemes often is the goal of binary-star research ! To help this process, a comp

Often a very difficult problem...

To help this process, a complex classification scheme merging schemes *i* (D/S/C) and *iii* (Evol.) has been proposed by P. Eggleton (Evolutionary Processes in Binary and Multiple Stars, Cambridge Univ. Press, 2001):

Table 3.5. Abbreviations for evolutionary states

Evolutionary state	Sub-type	den an eine stere state eren in Martine eren eren
P pre-main-sequence	TT	T Tau
	Be/Ae	Herbig emission-line stars
	BD	Brown dwarf $\sim 0.01-0.08 M_{\odot}$
	JMP	Jupiter-mass planet $\leq 0.01 M_{\odot}$
M main sequence	UMS	Upper main sequence $\gtrsim 8 M_{\odot}$
	IMS	Intermediate main sequence $\sim 2-8 M_{\odot}$
	LMS	Lower main sequence $\sim 0.08-2 M_{\odot}$
H Hertzsprung gap	HG	He not yet ignited; star expanding on thermal timescale
	CHeB	Core He-burning
	HB	Horizontal branch
	BL	Blue loop
	δC	Cepheid
	GKGC	G/K-giant clump: core He-burning, shallow convective envelope
	post-AGB	post-asymptotic-giant-branch
G red giant	FGB	First giant branch: non-burning He core, deep convective envelope
S red supergiant	GKGC	G/K-giant clump: core He-burning, deep convective envelope
	AGB	Asymptotic giant branch
	TP-AGB	Thermally-pulsating AGB
	TZO	Thorne-Żytkow object, red supergiant with NS/BH core
R hot remnant	WR	Wolf-Rayet (WN, WC, WO)
	UHeMS	Upper He main sequence $(M \gtrsim 1.4 M_{\odot})$
C hot core	SDB	pre-He-WD
	SDO	pre-C/O-WD
	PNN	Planetary nebula nucleus
E He-burning star	LHeMS	Lower He main sequence $(M \lesssim 1.4 M_{\odot})$
	EHB	Extreme horizontal branch
	SDOB	Sub-dwarf OB
	SDB	Possibly the same as EHB or SDOB
W white dwarf	HeWD	He white dwarf
	COWD	C/O white dwarf
	NeWD	Ne white dwarf
N neutron star	NS	normally-rotating neutron star
	XRP	X-Ray pulsar
	MSP	Millisecond pulsar; rapidly-rotating neutron star
B black hole	BH	Black hole

To help this process, a complex classification scheme merging schemes *i* (D/S/C) and *iii* (Evol.) has been proposed by P. Eggleton (Evolutionary Processes in Binary and Multiple Stars, Cambridge Univ. Press, 2001):

Then, a given evolutionary path will be characterized by :

- a chain of evolutionary states

Table 3.5. Abbreviations for evolutionary states

Evolutionary state	Sub-type	designed in the edge over a strapped and an
P pre-main-sequence	TT	T Tau
	Be/Ae	Herbig emission-line stars
	BD	Brown dwarf $\sim 0.01-0.08 M_{\odot}$
	JMP	Jupiter-mass planet $\lesssim 0.01 M_{\odot}$
M main sequence	UMS	Upper main sequence $\gtrsim 8 M_{\odot}$
	IMS	Intermediate main sequence $\sim 2-8 M_{\odot}$
	LMS	Lower main sequence $\sim 0.08-2 M_{\odot}$
H Hertzsprung gap	HG	He not yet ignited; star expanding on thermal timescale
	CHeB	Core He-burning
	HB	Horizontal branch
	BL	Blue loop
	δC	Cepheid
	GKGC	G/K-giant clump: core He-burning, shallow convective envelope
	post-AGB	post-asymptotic-giant-branch
G red giant	FGB	First giant branch: non-burning He core, deep convective envelope
S red supergiant	GKGC	G/K-giant clump: core He-burning, deep convective envelope
	AGB	Asymptotic giant branch
	TP-AGB	Thermally-pulsating AGB
	TZO	Thorne-Żytkow object, red supergiant with NS/BH con
R hot remnant	WR	Wolf-Rayet (WN, WC, WO)
	UHeMS	Upper He main sequence $(M \gtrsim 1.4 M_{\odot})$
C hot core	SDB	pre-He-WD
	SDO	pre-C/O-WD
	PNN	Planetary nebula nucleus
E He-burning star	LHeMS	Lower He main sequence $(M \lesssim 1.4 M_{\odot})$
	EHB	Extreme horizontal branch
	SDOB	Sub-dwarf OB
	SDB	Possibly the same as EHB or SDOB
W white dwarf	HeWD	He white dwarf
	COWD	C/O white dwarf
	NeWD	Ne white dwarf
N neutron star	NS	normally-rotating neutron star
	XRP	X-Ray pulsar
	MSP	Millisecond pulsar; rapidly-rotating neutron star
B black hole	BH	Black hole

To help this process, a complex classification scheme merging schemes *i* (D/S/C) and *iii* (Evol.) has been proposed by P. Eggleton (Evolutionary Processes in Binary and Multiple Stars, Cambridge Univ. Press, 2001):

Table 3.5. Abbreviations for evolutionary states

Evolutionary state	Sub-type	der alle sin der stör erste in Kerterseiter eine
P pre-main-sequence	TT	T Tau
	Be/Ae	Herbig emission-line stars
	BD	Brown dwarf $\sim 0.01-0.08 M_{\odot}$
	JMP	Jupiter-mass planet $\leq 0.01 M_{\odot}$
M main sequence	UMS	Upper main sequence $\gtrsim 8 M_{\odot}$
and the second s	IMS	Intermediate main sequence $\sim 2-8 M_{\odot}$
	LMS	Lower main sequence $\sim 0.08-2 M_{\odot}$
H Hertzsprung gap	HG	He not yet ignited; star expanding on thermal timescale
	CHeB	Core He-burning
	HB	Horizontal branch
	BL	Blue loop
	δC	Cepheid
	GKGC	G/K-giant clump: core He-burning, shallow convective envelope
	post-AGB	post-asymptotic-giant-branch
G red giant	FGB	First giant branch: non-burning He core, deep convective envelope
S red supergiant	GKGC	G/K-giant clump: core He-burning, deep convective envelope
	AGB	Asymptotic giant branch
	TP-AGB	Thermally-pulsating AGB
	TZO	Thorne-Żytkow object, red supergiant with NS/BH core
R hot remnant	WR	Wolf-Rayet (WN, WC, WO)
	UHeMS	Upper He main sequence $(M \gtrsim 1.4 M_{\odot})$
C hot core	SDB	pre-He-WD
	SDO	pre-C/O-WD
	PNN	Planetary nebula nucleus
E He-burning star	LHeMS	Lower He main sequence $(M \lesssim 1.4 M_{\odot})$
	EHB	Extreme horizontal branch
	SDOB	Sub-dwarf OB
	SDB	Possibly the same as EHB or SDOB
W white dwarf	HeWD	He white dwarf
	COWD	C/O white dwarf
	NeWD	Ne white dwarf
N neutron star	NS	normally-rotating neutron star
	XRP	X-Ray pulsar
	MSP	Millisecond pulsar; rapidly-rotating neutron star
B black hole	BH	Black hole

To help this process, a complex classification scheme merging schemes *i* (D/S/C) and *iii* (Evol.) has been proposed by P. Eggleton (Evolutionary Processes in Binary and Multiple Stars, Cambridge Univ. Press, 2001):

Then, a given evolutionary path will be characterized by :

- a chain of evolutionary states

- a mass-transfer mode [→ Siess] (simplest 'case A..', 'B..', 'C..')

Table 3.5. Abbreviations for evolutionary states

Evolutionary state	Sub-type	des a ser conservationers of approximation
P pre-main-sequence	TT	T Tau
	Be/Ae	Herbig emission-line stars
	BD	Brown dwarf $\sim 0.01-0.08 M_{\odot}$
	JMP	Jupiter-mass planet $\lesssim 0.01 M_{\odot}$
M main sequence	UMS	Upper main sequence $\gtrsim 8 M_{\odot}$
	IMS	Intermediate main sequence $\sim 2-8 M_{\odot}$
	LMS	Lower main sequence $\sim 0.08-2 M_{\odot}$
H Hertzsprung gap	HG	He not yet ignited; star expanding on thermal timescale
	CHeB	Core He-burning
	HB	Horizontal branch
	BL	Blue loop
	δC	Cepheid
	GKGC	G/K-giant clump: core He-burning, shallow convective envelope
	post-AGB	post-asymptotic-giant-branch
G red giant	FGB	First giant branch: non-burning He core, deep convectiv envelope
S red supergiant	GKGC	G/K-giant clump: core He-burning, deep convective envelope
	AGB	Asymptotic giant branch
	TP-AGB	Thermally-pulsating AGB
	TZO	Thorne-Żytkow object, red supergiant with NS/BH core
R hot remnant	WR	Wolf-Rayet (WN, WC, WO)
	UHeMS	Upper He main sequence $(M \gtrsim 1.4 M_{\odot})$
C hot core	SDB	pre-He-WD
	SDO	pre-C/O-WD
	PNN	Planetary nebula nucleus
E He-burning star	LHeMS	Lower He main sequence $(M \lesssim 1.4 M_{\odot})$
	EHB	Extreme horizontal branch
	SDOB	Sub-dwarf OB
	SDB	Possibly the same as EHB or SDOB
W white dwarf	HeWD	He white dwarf
	COWD	C/O white dwarf
	NeWD	Ne white dwarf
N neutron star	NS	normally-rotating neutron star
	XRP	X-Ray pulsar
	MSP	Millisecond pulsar; rapidly-rotating neutron star
B black hole	BH	Black hole

To help this process, a complex classification scheme merging schemes *i* (D/S/C) and *iii* (Evol.) has been proposed by P. Eggleton (Evolutionary Processes in Binary and Multiple Stars, Cambridge Univ. Press, 2001):

Then, a given evolutionary path will be characterized by :

- a chain of evolutionary states

- a mass-transfer mode

(simplest 'case A..', 'B..', 'C..')

Example:

case AD = case A with Dynamic RLOF: MMD \rightarrow MMS \rightarrow (M \rightarrow H \rightarrow G \rightarrow W)MC

case C = RLOF during asymptotic giant branch and $4M_{\odot}$) or case the maximum r

- a mass-transfer mode

simplest 'case A..', 'B..', 'C..'

Table 3.7. Some major modes of evolution

0-NE-Nuclear evolution

1-F1, R1-RLOF: mass transfer, forward (F) or reverse (R), slow (Nuclear or MB) timescale;

Section 3.3

2-F2, R2-RLOF: ditto, fast (thermal) timescale; Section 3.3

cases A, B, or C

Eccentricity - period (e - P) diagrams may provide clues to identify mass-transfer/interaction processes

- a mass-transfer mode

simplest 'case A..', 'B..', 'C..' But the full picture is generally much more complex.

Eccentricity - period (e - P) diagrams may provide clues to identify mass-transfer / interaction processes

because they rule the evolution of orbital elements [→ Siess] :

- a mass-transfer mode

simplest 'case A..', 'B..', 'C..' But the full picture is generally much more complex.

Eccentricity - period (e - P) diagrams may provide clues to identify mass-transfer / interaction processes

because they rule the evolution of orbital elements [-> Siess]:

$$\dot{a} = f_a(a, e, M, \dot{M})$$
$$\dot{P} = f_P(a, e, M, \dot{M})$$
$$\dot{e} = f_e(a, e, M, \dot{M})$$
$$\dot{M} = f_M(a, e, M)$$
$$\frac{a^3}{P^2} = M = M_1 + M_2$$

Canonical binary evolution

- Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS 329, 897

- P. Eggleton, Evolutionary Processes in Binary and Multiple Stars, Cambridge Univ. Press, 2001

Hence, from a_0 , P_0 , e_0 , M_0 , and these equations, it is possible to derive (e, P) for the current value of M.

Eccentricity - period (e - P) diagrams may provide clues to identify mass-transfer / interaction processes

For example:

I.About the possibility to accrete spin angular momentum in detached binaries

A hot debate...

From observations of rapidly-rotating post-masstransfer stars (in detached binaries?): YES

• Fast winds (binaries with OB stars): $k \equiv v_{\rm orb}/v_{\rm wind} << 1$

Accretion column, tilted by an angle $\gamma = \arctan v_{wind} / v_{orb}$ with respect to the orbital motion, with matter falling onto the compact star from its rear side (as viewed from the mass-losing star) with a rate \dot{M}_{B-H}

• Slow winds (detached binary systems involving an AGB star): $k \equiv v_{\rm orb}/v_{\infty} >> 1$

Accretion column distorted by Coriolis effect, must be investigated numerically. Accretion rates $\leq 0.1 M_{B-H}$ Theuns & Jorissen 1993, MNRAS 265, 946 Mastrodemos & Morris 1998, ApJ 497, 303 Folini & Walder 2000, Ap&SS 274, 189 Nagae et al. 2004, A&A 419, 335 Jahanara et al., 2005, A&A 441, 589 Wind may be increased by tidal forces Tout & Eggleton 1988, MNRAS 231, 823 Frankowski & Tylenda 2001, A&A 367, 513 Eccentricity - period (e - P) diagrams may provide clues to identify mass-transfer / interaction processes

For example:

A compilation of (e – log P) diagrams for several classes of pre- and post-mass-transfer binaries: Jorissen et al., 2009, A&A 498, 489

Specific orbital energy
$$\varepsilon = \frac{E_{\text{tot}}}{\mu}$$
:
 $\varepsilon = \frac{v^2}{2} - \frac{\mu}{r} = -\frac{1}{2}\frac{\mu^2}{h^2}(1 - e^2) = -\frac{\mu}{2a}$

h = specific angular momentum

= total relative angular momentum / reduced mass

$$\overline{h} = \overline{r} \times \overline{v} = \frac{\overline{J}_{tot}}{\mu} = \frac{\overline{J}_1 + \overline{J}_2}{\mu}$$
$$J = \left(\frac{G M_1^2 M_2^2 a}{M_1 + M_2}\right)^{1/2} (1 - e^2)^{1/2}$$
$$= \mu \left[G(M_1 + M_2) a(1 - e^2)\right]^{1/2}$$
$$= \mu h$$
$$h = \left[G(M_1 + M_2) a(1 - e^2)\right]^{1/2}$$

Hence, from

$$\varepsilon = -\frac{1}{2} \frac{\mu^2}{h^2} (1 - e^2),$$

minimum energy ε at constant angular momentum *h* is reached when e = 0

Which interaction / masstransfer processes account for this kind of evolution?

Another significant difference between initial and final samples : the mass functions

Mass functions for SB1:

$$f(M) = \frac{\left(M_{\text{comp}} \sin i\right)^3}{\left(M_{\text{primary}} + M_{\text{comp}}\right)^2}$$

Under the assumption that the orbits are oriented at random in space, the inclination angle *i* distributes as sin *i* :

Prob(i) di = sin i di

Hence, for a large sample of stars, the distribution of f(M) reflects the distributions of M_{primary} and $M_{\text{companion}}$

The Algol paradox : on-going mass transfer...

The defining properties of Algols are

- finally theory/binary : on-going, slow mass transfer (case A, nuclear time scale)

The binary zoo

Classification of binary stars:

i)

There are three possible ways to classify binary stars, based on:

Mass transfer: a. Detached system b. Semi-detached system c. Contact system

ii) Observational properties

a. photometric binary
b. [peculiar] 'abundance' binary
c.
iii) Evolutionary stage

Knowing the location of the binary in all 3 schemes often is the goal of binary-star research !

a. wind accretion b. Roche-lobe overflow

The binary zoo

Classification of binary stars:

There are three possible ways to classify binary stars, based on:

i) Mass transferii) Evolutionary stageiii)Observational properties

We now go through every class of 'observational properties'

But first, some definitions about orbital elements... [-> Mazeh, Marsh]

Orbital elements

Relative orbit (B with respect to A)

Kepler third law (in relative orbit):

$$a^3/P^2 = G (M_A + M_B)/4\pi^2$$

Orbital elements

Size of orbit:

- a semi-major axis (B wrt A)
- e eccentricity = $\sqrt{a^2 - b^2}/a$ (b = semi-minor axis)

Orientation in plane:

 ω argument of periastron

Orientation of plane wrt sky:

- Ω Position angle of ascending node
- *i* inclination on the plane of the sky

Time:

- P orbital period
- T Epoch of passage (usually at periastron)

Astrometric binaries (I)

Basic principles

Astrometric binaries(II)

Basic principles

Astrometry (V)

Color-induced displacement - Application to SDSS

The position of the photocentre of two stars with different colours is a function of wavelength (e.g., Gunn u,g,r,i,z) but is always located on the segment joining the two stars.

Look for stars with d(u, z) > 0.2" [and exclude asteroids !]

These stars are binaries (mostly WD + MV pairs) because they also exhibit composite colors

Pourbaix et al. 2004, A&A 423, 755

$\Delta \mu$ binaries (I)

Proper motion measured on short time scale (e.g. Hipparcos: 3 y) with respect to orbital period will contain a strong orbital component and will differ from true proper motion measured on long time scale (e.g. Tycho-2: 100 y)

Astrometry (VI)

$\Delta \mu$ binaries (II)

 $\Delta \mu$ binaries found among spectroscopic binaries with known *P*:

• expected at $P > \sim 1500$ d

triple systems at P <~ 400 d</p>

Frankowski et al. 2007, A&A 464, 377

Detection efficiency of $\Delta \mu$ binaries rises to 100% at parallaxes > 30 mas

The various kinds of binaries

	Туре	Notation	Two stars visible?	orbit	dimension
	visual and interformetric	VB	yes	relative	angular
	astrometric	AB	yes no	relative photocentric	angular
	spectroscopic	SB2 SB1	yes no	absolute absolute	linear

Spectroscopic binaries (I)

Detection (of absolute orbit) based on the Doppler effect:

Spectroscopic binaries (II)

The radial-velocity curve

$$V_r(G) + \frac{dz(A)}{dt}$$
$$V_r(G) + K_A(e\cos\omega + \cos(\omega + \nu(t)))$$

Spectroscopic binaries (III)

The radial-velocity curve

Spectroscopic binaries: HERMES/Mercator spectrograph

Spectroscopic binaries (III)

The radial-velocity curve

Spectroscopy: Difficulties (III)

Only partial access to orbital elements

 $V_r(A) = K_A (e \cos \omega + \cos (\omega + \nu(t)))$

where

- If only one observable spectrum (A) (because companion too faint: on the low MS or WD) :
 - degeneracy between *i* and a_A : $K_A \propto a_A \sin i$ (relative *a* cannot be derived)

$$K_{A} = \frac{2\pi}{P} \times \frac{a_{A}\sin i}{(1-e^{2})^{1/2}}$$

Spectroscopy: Difficulties (III)

Only partial access to orbital elements

 $V_r(A) = K_A (e \cos \omega + \cos (\omega + \nu(t)))$

where

$$K_{A} = \frac{2\pi}{P} \times \frac{a_{A}\sin i}{(1-e^{2})^{1/2}}$$

- If only one observable spectrum (A) (because companion too faint: on the low MS or WD) :
 - degeneracy between *i* and a_A : $K_A \propto a_A \sin i$ (relative *a* cannot be derived)
 - only mass function f(M) can be derived:

$$f(M) = \frac{(M_B \sin i)^3}{(M_A + M_B)^2}$$
$$= K_A^3 P \left(1 - e^2\right)^{3/2} / \left(2\pi G\right)^3$$

Spectroscopy: Difficulties (III)

Only partial access to orbital elements

 $V_r(A) =$

$$K_A(e\cos\omega + \cos(\omega + \nu(t)))$$

where

$$K_{A} = \frac{2\pi}{P} \times \frac{a_{A}\sin i}{(1-e^{2})^{1/2}}$$

Same for $V_r(B)$ and K_B

- If only one observable spectrum (A) (because companion too faint: on the low MS or WD) :
 - degeneracy between *i* and a_A : $K_A \propto a_A \sin i$ (relative *a* cannot be derived)
 - only mass function f(M) can be derived:

$$f(M) = \frac{(M_B \sin i)^3}{(M_A + M_B)^2}$$
$$= K_A^3 P (1 - e^2)^{3/2} / (2\pi G)^{3/2}$$

if two observable spectra (components of approx. equal L, aka 'composite spectra'): only M_A sin i, M_B sin i, M_A/M_B

The various kinds of binaries and deriving masses

Spectroscopy: Difficulties (I)

Despite the fact that the spectral Doppler shift is unavoidable in a binary, there are binary families however where it is hard, even impossible, to detect:

Pulsation of atmosphere (Miras, Cepheids, RV Tau...) causes intrinsic velocity variations and make binary detection difficult/impossible

Spectroscopy: Difficulties (V)

Intrinsic radial-velocity variations: Miras

The radial-velocity curve (0) of the Mira star R CMi is strongly correlated with its light curve (•)

$$P_{
m puls} = 337.8
m d$$

 $K_{
m puls} = 8
m km/s$

 \rightarrow intrinsic Vr variations due to pulsation

(Jorissen, 2003, AGB Stars, eds. Habing & Olofsson, Springer)

Spectroscopy: Difficulties (VII)

Intrinsic radial-velocity variations: Miras

Spectroscopy: Difficulties (VIII)

Intrinsic radial-velocity variations: Miras

Vr semi-amplitude $K_{puls} \ge 10$ km/s due to pulsation for Mira variables

$$K_{\text{orb}} (\text{km/s}) =$$

213 $f(M_A, M_B)^{1/3} P^{-1/3}(d) (1 - e^2)^{-1/2}$

Adopting

 $P = 1000 \text{ d}, e = 0, M_A = 1.5 \text{ M}_o, M_B = 0.5 \text{ M}_o$ yields $K_{\text{orb}} = 6.7 \text{ km/s} < K_{\text{puls}}$

(Jorissen, 2003, AGB Stars, eds. Habing & Olofsson, Springer)

Not many spectroscopic binaries are known among Mira variables because $K_{orb} \leq K_{puls}$ Other detection methods must be used!

Photometry: MACHO (I)

Originally, a survey for micro lensing events
 in the LMC with Mount Stromlo 50" telescope

Photometry: MACHO (II)

A survey of long-period variables in the LMC

P-L relationship for LPVs in LMC

Wood 2000, PASA 17,18; Derekas et al., 2006, ApJ 650, L55

- C Mira fundamental mode
- A, B higher overtones

The enigmatic **D** and **E** sequences

Photometry: MACHO (V)

P-L relationship for LPVs in LMC

Wood 2000, PASA 17,18; Derekas et al., 2006, ApJ 650, L55

- C Mira fundamental mode
- A, B higher overtones
- E eclipsing & ellipsoidal (+)

Nicholls et al. (2010 MNRAS 405, 1770) from radial velocities confirm that sequence E stars are binaries

Photometry: MACHO (V)

P-L relationship for LPVs in LMC

Wood 2000, PASA 17,18; Derekas et al., 2006, ApJ 650, L55

- C Mira fundamental mode
- A, B higher overtones
- E eclipsing & ellipsoidal (+)

D ?? (also called 'LSP': 'long secondary periods')

25% of LMC LPV are on sequence D (!),

Can they all be binaries ?

For comparison, among M giants, the frequency of spectroscopic binaries with periods in the range 200 - 10000 d is between 16 and 21%

Photometry: MACHO (VII)

→ 25% of LMC LPVs fill their Roche lobe if all sequence D stars are binaries !?

Photometry: MACHO (VII)

Only 5% among D sequence show clear eclipsing or ellipsoidal behaviour

What is the nature of the other D stars ?

Photometry: MACHO (VII)

Binaries among LPVs: none from spectroscopy, too many from MACHO! 25% of LMC LPVs fill their Roche lobe if all sequence D stars are binaries !?

P~706.672d

1.5

P~260.512d

1.5

1

Green lines = P for RLOF Derekas et al., 2006, ApJ 650, L55

Only 5% among D sequence show clear eclipsing or ellipsoidal behaviour

What is the nature of the other D stars?

D sequence caused by dust obscuration in Roche-lobe-filling AGB stars? (Soszynski 2007, ApJ, 660, 1486) Dust in spiral wave forming around binary LPVs.

as predicted by SPH simulations

500 < = > < = >

Direct imaging of circumstellar shell: The proto PN AFGL 3068

Mauron & Huggins, 2006, A&A 452, 257 Periodic dust obscuration from this spiral wave is probably what causes variability along D sequence

Theuns & Jorissen 1993, MNRAS 265, 946 Mastrodemos & Morris 1998, ApJ 497, 303 Nagae et al. 2004, A&A 419, 335

More on photometry

Eclipses by dust: stars on sequence D

Soszynski 2007 ApJ 660, 1486

Photometric binaries: Eclipsing

o o o o

Other classes of eclipsing binaries :

- ε Aur : eclipses by an inclined disk, with a 27-yr period

- ζ Aur and VV Cep : eclipses of a hot main-sequence star by the atmosphere of a giant or supergiant : eclipses probe the wind from the hot star

Carpenter, 1992, IAU Symp 151, 51

The various kinds of binaries

Туре	Notation	Two stars visible?	orbit	dimension
visual and interformetric	VB	yes	relative	angular
astrometric	AB	yes no	relative photocentric	angular
spectroscopic	SB2 SB1	yes no	absolute absolute	linear
photometric (eclipsing, ellipsoidal)	EB	'yes' (composite)	relative	relative (radius *)

A given system may belong to more than one category!

Photometric binaries

These are the binaries we just discussed :

- Algols
 - Semidetached systems with main sequence primary and evolved secondary
 - Slow phase of mass transfer
 - Rapid rotators are a sub-class that may connect W Ser systems with normal Algols
- W UMa Systems
 - Overcontact systems with components of different mass but very similar temperatures
 - Details of structure not well-understood
 - Asymmetries in light curves that change on short timescales
- W Ser Systems
 - Semidetached systems in or just past the rapid phase of mass transfer
 - Strong emission lines in the UV
 - o Precursors of Algols?

Other classes of eclipsing binaries :

- ε Aur : eclipses by an inclined disk
- ζ Aur and VV Cep : eclipses of a hot main-sequence star by the atmosphere of a giant or supergiant

Photometric binaries: Spotted

- RS CVn Systems
 - Detached systems with F or G-type primary and K subgiant secondary
 - Enormous cool spots that migrate on a yearly timescale
 - The binary system is close enough (P < 100 d) for the stars to be spun up by tidal locking, which then causes a dynamo effect, magnetic field, and spots

Eccentricity - period diagrams

RS CVn often confused with pre-MS binaries, because

- both have spectral type K
- they fall in the same P range

e - P diagram for systems with KIII primaries from SB9 [The 9th Catalogue of Spectroscopic Binary Orbits] http:// sb9.astro.ulb.ac.be

RS CVn versus pre-main-sequence

Eccentricity - period diagrams

RS CVn often confused with pre-MS binaries, because

- both have spectral type K
- they fall in the same P range

e - P diagram for systems with KIII primaries from SB9 [The 9th Catalogue of Spectroscopic Binary Orbits] http:// sb9.astro.ulb.ac.be

pre-main-sequence versus main-sequence period distribution

period distribution for all kinds of binaries

Photometric binaries: eruptive

novae : thern WD)	dwarf + WD (low accretion rate) a few: giant + WD ('symbiotic nova') nonuclear outbursts (non-destructive explosive H-burning on the	
cataclysmic variables:	dwarf + WD (high accretion rate with accretion disk): - dwarf novae	
	- AM Her (highly magnetic, no accretion disc) - DQ Her (moderately magnetic, accretion disc)	
accre	etion of disc instabilities	
Symbiotic : accre	giant + WD (neutron star in one case) sometimes accretion disc (Z And, X-ray flickering) most often no X-ray flickering (-> X-ray origin ?) accretion or disc instabilities	
supernovae type Ia : thern WDs	WD + WD nonuclear outbursts (destructive explosive C-burning in merging ?)	

Photometric binaries: eruptive

X-rays

Basics on X-ray binaries (III)

CVs = dwarf star + white dwarf in a short P, semi-detached system

Dwarf novae

Polars (AM Her systems): Highly magnetized white dwarfs

Intermediate Polars (DQ Her systems) Ionger P and wider separation: there is room for an accretion disk

X-rays

Basics on X-ray binaries (IV)

X-rays (photons with $h\nu > 0.1$ keV requiring $T > 10^6$ K) may come from:

hot stellar coronae (either single star or RS CVn binary)

RS CVn: dynamo caused by fast, synchronous rotation

- nuclear fusion (nova or symbiotic star)
 - Classical novae: explosive H-burning (10³³ 10³⁴ ergs/s)
 - Super soft sources : quiescent H-burning ?

accretion

- CVs = dwarf star + white dwarf in a short P, semi-detached system
 - Dwarf novae
 - Polars (AM Her systems)
 - Intermediate Polars (DQ Her systems)
- Algols = subgiant (less massive) + main sequence (more massive) in a semidetached system
- Symbiotics = giant star + white dwarf in a long P system but accretion-driven X-rays challenged !
- wind collision
 - Symbiotics

X-rays from binaries :

The case of symbiotic stars

Origin of X-rays not clear:

accretion disk, nuclear fusion, wind collision or fast rotation ?

Accretion-driven X-rays are accompanied by flickering with periods of minutes to days, Sokoloski 2003, ASP Conf. Ser. 303, p. 202 but flickering not often observed in symbiotic X rays!

 \rightarrow fast rotation as for RS CVn, with X-rays due to dynamo activity? Soker 2002, MNRAS 337, 1038

Intriguing possibility, because it requires a high incidence of fast rotation !

The WIRRING stars, or 'Wind-Induced Rapidly RotatING', Jeffries & Stevens, 1996, MNRAS 279, 180 are post-mass-transfer systems rotating fast, due to the accretion of spin angular momentum during the mass transfer !
Photometric binaries: X-rays

Low-mass X-ray binaries (related to dwarf novae and CVs)

High-mass X-ray binaries : neutron star or black hole companions

The bestiary

What should you have learned ?

DQ Her, AM Her RS CVn, pre-main sequence Algols, β Lyr, SV Cen, W Ser Z And (symbiotic) VV Cep, zeta Aur, eps Aur, MACHO sequence D CH (giants and subgiants), S (no-Tc), Ba, dwarf Ba, WIRRING, Abell 35 post-AGB SN la novae, dwarf novae LMXRB, HMXRB The concepts

cases A, B, C RLOF, Bondi-Hoyle, common envelope dynamical, thermal, nuclear time scales astrometric, interferometric, spectroscpic (SBI, SB2) eclipsing, ellipsoidal binaries e - P, mass function, deriving masses

