Machine learning techniques meet binaries

Gregor Traven
Mathieu Van der Swaelmen
Thibault Merle
Sofia Feltzing
Ross Church
Pablo Navarro
Klemen Čotar
Galah team

University of Ljubljana
Faculty of Mathematics and Pbysics

Lyon, June 2019

Science of large samples

RAVE

THOUSANDS -> MILLIONS of binary stars

Science of large samples

Figure: Bate et al. 2002

WHAT is machine learning

HOW can it help

Decisions

Figure: taken from www.becominghuman.ai

Decisions

Figure: adapted from www.becominghuman.ai

Classification

Prediction

Figure: adapted from Leung \& Bovy 2019

Machine learning scope

Figure: taken from www.cookieegroup.com

What is machine learning ?

Algorithm

What is machine learning ?

Algorithm

 $+$(training) Data

What is machine learning ?

Algorithm $+$
(training) Data

Decision maker, classifier, generative model, ...

WHAT is machine learning

HOW can it help

Machine learning for detection

F7-K dwarfs

common proper motio	6D phase space, chemical abundances
visual, resolved	imaging
astrometric	epoch astrometry (positions)
spectroscopic	doppler shift of spectral lines
photometric, eclipsing	variability in the light curve, eclipses

GALAH survey

- Mission: Galactic archaeology
- 10^{6} stars, magnitude range $12<V<14$
- ~ 32 elemental abundances
- 471-490 565-587 648-674 758-789
- $\mathrm{R} \sim 28000\left(\Delta v_{r} \sim 15 \mathrm{~km} / \mathrm{s}\right)$, SNR ~ 100

Anglo-Australian Telescope
(Coonabarabran, AU)

General classification - machine learning approach

BINARY STARS

PMS STARS

GIANTS

METAL-POOR

Dimensionality reduction \Rightarrow Classification

Figure: taken from www.cookieegroup.com

Dimensionality reduction - autoencoder (ANN)

Figure: taken from www.blog.goodaudience.com

Dimensionality reduction - autoencoder (ANN)

 \qquad

Figure: adapted from www.blog.goodaudience.com

Dimensionality reduction - autoencoder (ANN)

Figure: Autoencoder on GALAH spectra, provided by Klemen Čotar

Dimensionality reduction - autoencoder (ANN)

Figure: Autoencoder on GALAH spectra, provided by Klemen Čotar

Dimensionality reduction - autoencoder (ANN)

Figure: Autoencoder on GALAH spectra, provided by Klemen Čotar

Dimensionality reduction - autoencoder (ANN)

Figure: adapted from www.blog.goodaudience.com

t-distributed Stochastic Neighbour Embedding

Isomap

Sammon mapping

7210414959
0690159734
9665407401
3134727121
1742351244

Learning about t-SNE

https://distill.pub/2016/misread-tsne

SEE ALSO
Kos et al. 2018
and the original publications by Van Der Matten et al.

t-SNE map of $\sim 80 \mathrm{k}$ GALAH spectra

Dimensionality reduction \Rightarrow Classification

t-SNE Explorer

Molecular absorption bands

Search by sobject id

Problematic spectra

Oscillating continuum

t-SNE
 classification Galah DR2

Buder et al. 2018

Finding SB2 $(3,4)$ - conventional approach

Figure: CCF detection method (Merle et al. 2017)

SB2 detection: t-SNE vs CCF

SB2 candidates

 from different detection methods1. method: t-SNE
2. method:

CCF
(Cross Correlation Function; Merle et al. 2017)

SB2 detection: $\mathrm{t}-\mathrm{SNE}$ vs CCF

Limits of $\mathrm{t}-\mathrm{SNE}$ detection

GALAH red band: 100k singles / 5k binaries

Figure: Synthetic single + binary stars based on GALAH parameters for dwarfs, provided by Pablo Navarro Barrachina

Limits of $\mathrm{t}-\mathrm{SNE}$ detection

GALAH red band: 100k singles / 5k binaries

Figure: Synthetic single + binary stars based on GALAH parameters for dwarfs, provided by Pablo Navarro Barrachina

Limits of $\mathrm{t}-\mathrm{SNE}$ detection

GALAH red band: 100k singles / 5k binaries

Figure: Synthetic single + binary stars based on GALAH parameters for dwarfs, provided by Pablo Navarro Barrachina

Analysis \Rightarrow detection (using a generative model)

Figure: Binary star detection in APOGEE, El-Badry et al. 2018

Summary

- Population statistics of multiple stars are in high demand

Science of large samples

Astro2020 Science White Paper

Stellar multiplicity: an interdisciplinary nexus

Thematic Areas: $\quad \checkmark$ Planetary Systems $\quad \checkmark$ Star and Planet Formation
\checkmark Formation and Evolution of Compact Objects $\quad \checkmark$ Cosmology and Fundamental Physics
\checkmark Stars and Stellar Evolution \checkmark Resolved Stellar Populations and their Environments
\checkmark Galaxy Evolution $\quad \checkmark$ Multi-Messenger Astronomy and Astrophysics

We need to understand the population statistics of stellar multiplicity and their variations with stellar type, chemistry, and dynamical environment"

- stellar multiplicity - direct outcome of star formation
- stellar populations - consequence of stellar and binary evolution
- high-redshift galaxy radiation and reionization - binary-dependent stellar physics
- multi-messenger astronomy and compact objects - the outcomes of binary evolution
- Hubble constant (la supernovae, GW mergers) - binary star progenitors
- dark-matter substructure masses - distorted by binary populations
- exoplanet experiments - unknown multiple star contamination

Summary

- Population statistics of multiple stars are in high demand
- ML for various tasks (e.g. detection, generative models, feature extraction)

Try it out!

learn

scikit-learn
 Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable - BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.
Algorithms: SVM, nearest
neighbors, random forest, ...

- Examples

Dimensionality

reretucitigite number of random
variables to consider.
Applications: Visualization,
Increased efficiency
Algorithms: PCA, feature selection, non-negative matrix factorization.

- Examples

Regression

Predicting a continuous-valued attribute associated with an object.
Applications: Drug response, Stock prices.
Algorithms: SVR, ridge regression, Lasso, ...

- Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning
Modules: grid search, cross
validation, metrics. - Examples

Clustering

Automatic grouping of similar objects into sets.
Applications: Customer segmentation, Grouping experiment outcomes
Algorithms: k-Means, spectral
clustering, mean-shift, ... - Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.

Try it out!

Previous
Next
scikit-learn v0.21.2
Other versions
Please cite us if you use the software.

Examples

Miscellaneous examples Examples based on real world datasets
Biclustering
Calibration
Classification
Clustering
Pipelines and composite estimators
Covariance estimation
Cross decomposition
Dataset examples
Decomposition
Ensemble methods
Tutorial exercises
Feature Selection
Gaussian Process for
Machine Learning
Missing Value Imputation
Inspection
Generalized Linear Models
Manifold learning
Gaucsian Miyture Modole

Miscellaneous examples

Miscellaneous and introductory examples for scikit-learn.

Compact estimator representations

Multilabel
classification

Examples

Isotonic Regression

Comparing anomaly detection algorithms for outlier detection

Face completion with
a multi-output
estimators

The Johnson-
Lindenstrauss bound
for embedding with

News

January 2014: the textbook accompanying astroML is now available! View it on
Amazon.
November 2013: astroML 0.2 has been released! Get the source on Github

Our Introduction to astroML paper received the CIDU 2012 best paper award.

Links

astroML Mailing List
GitHub Issue Tracker

Videos

Scipy 2012 (15 minute

AstroML: Machine Learning and Data Mining for Astronomy

AstroML is a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, matplotlib, and astropy, and distributed under the 3clause BSD license. It contains a growing library of statistical and machine learning routines for analyzing astronomical data in Python, loaders for several open

Downloads

- Released Versions: Python Package Index
- Bleeding-edge Source: github astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets.

The goal of astroML is to provide a community repository for fast Python implementations of common tools and routines used for statistical data analysis in astronomy and astrophysics, to provide a uniform and easy-to-use interface to freely available astronomical datasets. We hope this package will be useful to researchers and students of astronomy. If you have an example you'd like to share, we are happy to accept a contribution via a GitHub Pull Request: the code repository can be found at http://github.com/astroML/astroML.

Summary

- Population statistics of multiple stars are in high demand
- ML for various tasks (e.g. detection, generative models, feature extraction)
- Smart combination of conventional and ML techniques

Summary

- Population statistics of multiple stars are in high demand
- ML for various tasks (e.g. detection, generative models, feature extraction)
- Smart combination of conventional and ML techniques
- Currently far from A.I., human interaction with ML essential

New Galah dataset (\sim 600k spectra)

local and global structure of the data in a single map

Finding SB1 - conventional approach

Figure: Detection of SB1s through RV variability (Matijevič et al. 2011)

Machine learning for analysis

$T_{1}, T_{2}, \log g_{1}, \log g_{2},[\mathrm{Fe} / \mathrm{H}], \triangle v_{r}, \ldots$

ML for the spectroscopic model $-\mathcal{M}_{\text {spec }, i}(\theta)$

Model atmospheres + spectral synthesis $=$ synthetic templates

ML for the spectroscopic model $-\mathcal{M}_{\text {spec }, i}(\theta)$

Model atmospheres + spectral synthesis $=$ synthetic templates

OR

Interpolation of observed spectra $=$ data-driven generative model

ML for the spectroscopic model $-\mathcal{M}_{\text {spec }, i}(\theta)$

Model atmospheres + spectral synthesis $=$ synthetic templates

OR

Interpolation of observed spectra $=$ data-driven generative model
(majority of spectral lines accounted for, effects of the instrument embedded automatically, identical resolution, directly determine e.g. mass, age - unknown how they affect spectra)

SME - Spectroscopy Made Easy by Piskunov \& Valenti (2016)
The Cannon by Ness et al. (2015)

$\mathcal{M}_{\text {spec }}(\theta)$ by The Cannon

flux $_{n, \lambda}=\Omega_{\lambda}^{T} \cdot I_{n}+$ noise

$$
I_{n}=f(\theta)=\left(T_{\text {eff }, n}, \log g_{n},[\mathrm{Fe} / \mathrm{H}]_{n}, T_{\text {eff }, n}^{2}, \ldots\right)
$$

$\mathcal{M}_{\text {spec }}(\theta)$ by The Cannon

$$
\begin{gathered}
\text { flux } x_{n, \lambda}=\Omega_{\lambda}^{T} \cdot I_{n}+\text { noise } \\
I_{n}=f(\theta)=\left(T_{\text {eff }, n}, \log g_{n},[\mathrm{Fe} / \mathrm{H}]_{n}, T_{\text {eff }, n}^{2}, \ldots\right)
\end{gathered}
$$

generative model for observed stellar spectra:

$$
\mathcal{M}_{\text {spec }, \lambda}(\theta)=\Omega_{\lambda}^{T} \cdot I_{n}
$$

$\mathcal{M}_{\text {spec }}(\theta)$ by The Payne

Figure: taken from Ting+ 2018

$\mathcal{M}_{\text {spec }}(\theta)$ by The Payne

Figure: taken from Ting+ 2018
generative model for observed stellar spectra:
$\mathcal{M}_{\text {spec }, \lambda}(\theta)=F_{\lambda}($ coefficients, $\theta)$

$\mathcal{M}_{\text {spec }}(\theta)$ by neural networks

Figure: adapted from Leung \& Bovy 2019

$\mathcal{M}_{\text {spec }}(\theta)$ by neural networks

Figure: adapted from Leung \& Bovy 2019
generative model for observed stellar spectra:

$$
\mathcal{M}_{\text {spec }, \lambda}(\theta)=?
$$

$\mathcal{M}_{\text {spec }}(\theta)$ by Neural networks

Figure: adapted from Leung \& Bovy 2019
generative model for observed stellar spectra:

$$
\mathcal{M}_{\text {spec }, \lambda}(\theta)=?
$$

Finding binary stars in data

Updating classification

Dimensionality reduction - t-SNE

t-SNE objective: minimize divergence between pairwise similarities $p_{j \mid i}$ and $q_{i j}$ of data points in original space A and in projection space B
(1) Euclidean distances in original space $\mathrm{A} \Rightarrow$ pairwise similarities $\left(p_{j \mid i}\right)$

$$
\begin{gathered}
p_{j \mid i}=\frac{\exp \left(-\left\|a_{i}-a_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|a_{i}-a_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}, \quad p_{i \mid i}=0, \quad p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 N} \\
\sigma_{i} \rightarrow P_{i}, \quad \operatorname{Perp}\left(P_{i}\right)=2^{H\left(P_{i}\right)}, \quad H\left(P_{i}\right)=-\sum_{j} p_{j \mid i} \log _{2} p_{j \mid i}
\end{gathered}
$$

(2) Pairwise similarities in projection space B with heavy-tailed Student-t

$$
q_{i j}=\frac{\left(1+\left\|b_{i}-b_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|b_{k}-b_{l}\right\|^{2}\right)^{-1}}
$$

(3) Minimize the Kullback-Leibler divergence between the two distributions

$$
C=K L(P \| Q)=\sum_{i} \sum_{j} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

Generative model for spectra

Figure: taken from Ting et al. 2018

The Cannon (Ness et al. 2015)
The Payne (Ting et al. 2018)

Classification - dimensionality reduction

"Essentially, all models are wrong but some are useful"
George E.P. Box

- High dimensional (pixel) space $A \Rightarrow$ low dimensional space B (map)
- Dim. reduction \Rightarrow information loss
- Preserve important information \Rightarrow intrinsic dimensionality of the spectra (Teff, elemental abundances, chromospheric emission, etc.)
- Projection should retain structure of some low-D manifold on which our datapoints lie

t-SNE Explorer

Projection of 587154 datapoints. Galah P30 dr52 new all nolR

6552

Ru_abund_cannon 1.216 Sc_abund_cannon 0.433 Si_abund_cannon 0.477 Sm_abund_cannon 1.112 Sr_abund_cannon 1.561

$$
\text { - Teff_cannon } 6447.867
$$

Ti_abund_cannon 0.329
V_abund_cannon 0.241 Vmic_cannon 1.486
Vsini_cannon 17.209 Y_abund_cannon 0.401 Zn_abund_cannon - 0.064 Zr_abund_cannon 1.161
get flags Search by tsne id

t-SNE unique id: 140805004801202

autoencoder (feature extraction) + t-SNE

autoencoder (feature extraction) $+\mathrm{t}-\mathrm{SNE}$

Figure: Autoencoder (100 neurons middle layer) + t-SNE on GALAH spectra, binary stars in red, provided by Klemen Čotar

Galah survey - DR2 (Buder et al. 2018)

Machine learning for detection

F7-K dwarfs

Science of large samples

The binary fraction $\left(f_{b}, f_{b, 0}\right)$

Science of large samples

The binary fraction $\left(f_{b}, f_{b, 0}\right)$

Initial distributions of
P (period), $q\left(M_{2} / M_{1}\right)$, e (eccentricity), Age

Science of large samples

The binary fraction $\left(f_{b}, f_{b, 0}\right)$

Initial distributions of

```
\(P\) (period), \(q\left(M_{2} / M_{1}\right)\), e (eccentricity), Age
```

\Uparrow

Observed properties of a binary population $\left(T_{1}, T_{2}, R_{1}, R_{2}, \log g_{1}, \log g_{2},[\mathrm{Fe} / \mathrm{H}], \Delta v_{r}\right)$

Science of large samples

The binary fraction $\left(f_{b}, f_{b, 0}\right)$

Initial distributions of

$$
P \text { (period), } q\left(M_{2} / M_{1}\right), e \text { (eccentricity), Age }
$$

\Uparrow

Observed properties of a binary population $\left(T_{1}, T_{2}, R_{1}, R_{2}, \log g_{1}, \log g_{2},[\mathrm{Fe} / \mathrm{H}], \Delta v_{r}\right)$

But first: DETECTION and ANALYSIS

Example applications

A\&A 602, A110 (2017)

Fig. 8. Left panel: t-SNE+DBSCAN of filtered Gaia-sampled Kepler data set fitted with the two-Gaussian model. Right panel: mean of all normalized light curves in each DBSCAN class; gray shading indicates the region $[-\sigma, \sigma]$ around the computed mean at a given orbital phase.

Figure: Kochoska et al. 2017

Figure A2. Comparison of the performance of PCA, Locally linear embedding (LLE), Spectral embedding and t-SNE. Methods follow from the most to the least linear (left to right). In the top row we compare the four methods on the case of ω Cen (an easy case) and in the bottom row for M67 (a harder case). Known cluster members are marked in red. Notice how efficiently t-SNE covers the plane and how many more distinct groups one can see.

Figure: Kos et al. 2018

