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Science of large samples

THOUSANDS -> MILLIONS of binary stars



Science of large samples

Figure: Bate et al. 2002



WHAT is machine learning

HOW can it help



Decisions

Figure: taken from www.becominghuman.ai



Decisions

Figure: adapted from www.becominghuman.ai



Classification



Prediction

Figure: adapted from Leung & Bovy 2019



Machine learning scope

Figure: taken from www.cookieegroup.com



What is machine learning ?

Algorithm

+
(training) Data

=
Decision maker, classifier,

generative model, ...
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WHAT is machine learning

HOW can it help



Machine learning for detection

common proper motio 6D phase space, chemical abundances

visual, resolved imaging

astrometric epoch astrometry (positions)

spectroscopic doppler shift of spectral lines

photometric, eclipsing variability in the light curve, eclipses



GALAH survey
Mission: Galactic archaeology
106 stars, magnitude range 12 < V < 14
∼ 32 elemental abundances
471–490 565–587 648–674 758–789
R ∼ 28 000 (∆vr ∼ 15 km/s), SNR ∼ 100

Anglo-Australian
Telescope
(Coonabarabran, AU)



General classification - machine learning approach

DWARFS

GIANTS

PMS STARS

METAL-POOR

BINARY STARS



Dimensionality reduction ⇒ Classification

Figure: taken from www.cookieegroup.com



Dimensionality reduction - autoencoder (ANN)

Figure: taken from www.blog.goodaudience.com



Dimensionality reduction - autoencoder (ANN)

Figure: adapted from www.blog.goodaudience.com



Dimensionality reduction - autoencoder (ANN)

Figure: Autoencoder on GALAH spectra, provided by Klemen Čotar
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Figure: Autoencoder on GALAH spectra, provided by Klemen Čotar



Dimensionality reduction - autoencoder (ANN)

Figure: adapted from www.blog.goodaudience.com



t–distributed Stochastic Neighbour Embedding



Learning about t–SNE

https://distill.pub/2016/misread-tsne

SEE ALSO

Kos et al. 2018

and the original publications by Van Der Matten et al.



t-SNE map of ∼ 80k GALAH spectra



Dimensionality reduction ⇒ Classification



Molecular absorption bands



Problematic spectra



Oscillating continuum



t-SNE
classification
Galah DR2

Buder et al.
2018





Finding SB2(3,4) - conventional approach
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Figure: CCF detection method (Merle et al. 2017)



SB2 detection: t–SNE vs CCF

SB2 candidates
from different
detection
methods

1. method:
t-SNE

2. method:
CCF

(Cross Correlation
Function; Merle et

al. 2017)



SB2 detection: t–SNE vs CCF



Limits of t–SNE detection

Figure: Synthetic single + binary stars based on GALAH parameters for dwarfs,
provided by Pablo Navarro Barrachina
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Figure: Synthetic single + binary stars based on GALAH parameters for dwarfs,
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Limits of t–SNE detection

Figure: Synthetic single + binary stars based on GALAH parameters for dwarfs,
provided by Pablo Navarro Barrachina



Analysis ⇒ detection (using a generative model)

Figure: Binary star detection in APOGEE, El-Badry et al. 2018



Summary

Population statistics of multiple stars are in high demand



Science of large samples

We need to understand the population statistics of stellar multiplicity and
their variations with stellar type, chemistry, and dynamical environment”

stellar multiplicity - direct outcome of star formation
stellar populations - consequence of stellar and binary evolution
high-redshift galaxy radiation and reionization - binary-dependent stellar physics
multi-messenger astronomy and compact objects – the outcomes of binary evolution
Hubble constant (Ia supernovae, GW mergers) – binary star progenitors
dark-matter substructure masses – distorted by binary populations
exoplanet experiments - unknown multiple star contamination



Summary

Population statistics of multiple stars are in high demand

ML for various tasks (e.g. detection, generative models, feature
extraction)



Try it out !
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ML for various tasks (e.g. detection, generative models, feature
extraction)

Smart combination of conventional and ML techniques

Currently far from A.I., human interaction with ML essential
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New Galah dataset (∼ 600k spectra)

local and global structure of the data in a single map



Finding SB1 - conventional approach

Figure: Detection of SB1s through RV variability (Matijevič et al. 2011)



Machine learning for analysis

T1, T2, log g1, log g2, [Fe/H], 4vr , ...



ML for the spectroscopic model -Mspec ,i(θ)

Model atmospheres + spectral synthesis = synthetic templates

OR

Interpolation of observed spectra = data-driven generative model

(majority of spectral lines accounted for, effects of the instrument embedded automatically,
identical resolution, directly determine e.g. mass, age - unknown how they affect spectra)
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Mspec(θ) by The Cannon

fluxn,λ = ΩT
λ · ln + noise

ln = f (θ) = (Teff ,n, log gn, [Fe/H]n,T
2
eff ,n, ...)

generative model for observed stellar spectra:

Mspec,λ(θ) = ΩT
λ · ln
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Mspec(θ) by The Payne

Figure: taken from Ting+ 2018

generative model for observed stellar spectra:

Mspec,λ(θ) = Fλ(coefficients, θ)



Mspec(θ) by The Payne

Figure: taken from Ting+ 2018

generative model for observed stellar spectra:

Mspec,λ(θ) = Fλ(coefficients, θ)



Mspec(θ) by neural networks

Figure: adapted from Leung & Bovy 2019

generative model for observed stellar spectra:

Mspec,λ(θ) = ?



Mspec(θ) by neural networks

Figure: adapted from Leung & Bovy 2019

generative model for observed stellar spectra:

Mspec,λ(θ) = ?



Mspec(θ) by Neural networks

Figure: adapted from Leung & Bovy 2019

generative model for observed stellar spectra:

Mspec,λ(θ) = ?



Finding binary stars in data



Updating classification



Dimensionality reduction - t–SNE

t-SNE objective: minimize divergence between pairwise similarities pj |i and
qij of data points in original space A and in projection space B

1 Euclidean distances in original space A ⇒ pairwise similarities (pj |i )

pj |i =
exp(−‖ai − aj‖2/2σ2i )∑

k 6=i exp(−‖ai − ak‖2/2σ2i )
, pi |i = 0, pij =

pj |i + pi |j

2N

σi → Pi , Perp(Pi ) = 2H(Pi ), H(Pi ) = −
∑

j

pj |i log2 pj |i

2 Pairwise similarities in projection space B with heavy-tailed Student-t

qij =
(1 + ‖bi − bj‖2)−1∑

k 6=l (1 + ‖bk − bl‖2)−1

3 Minimize the Kullback-Leibler divergence between the two distributions

C = KL(P‖Q) =
∑

i

∑
j

pij log
pij

qij



Generative model for spectra

Figure: taken from Ting et al. 2018

The Cannon (Ness et al. 2015)

The Payne (Ting et al. 2018)

...



Classification - dimensionality reduction

“Essentially, all models are wrong but some are useful”

George E.P. Box

High dimensional (pixel) space A ⇒ low dimensional space B (map)
Dim. reduction ⇒ information loss
Preserve important information ⇒ intrinsic dimensionality of the
spectra (Teff, elemental abundances, chromospheric emission, etc.)
Projection should retain structure of some low-D manifold on which
our datapoints lie





autoencoder (feature extraction) + t–SNE

+

t–SNE



autoencoder (feature extraction) + t–SNE

Figure: Autoencoder (100 neurons middle layer) + t–SNE on GALAH spectra,
binary stars in red, provided by Klemen Čotar







Galah survey - DR2 (Buder et al. 2018)



Machine learning for detection

visual, resolved imaging

common proper motion 6D phase space, chemical abundances

astrometric epoch astrometry (positions)

spectroscopic doppler shift of spectral lines

photometric, eclipsing variability in the light curve, eclipses



Science of large samples

The binary fraction (fb, fb,0)

Initial distributions of

P (period), q (M2/M1), e (eccentricity), Age

⇑

Observed properties of a binary population
(T1, T2, R1, R2, log g1, log g2, [Fe/H], 4vr )

But first: DETECTION and ANALYSIS
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Example applications

Figure: Kochoska et al. 2017



Figure: Kos et al. 2018


