Multiplicity Statistics \& Properties across the HR Diagram

Maxwell Moe (University of Arizona)

Overall Theme:

Two Modes of Binary Star Formation

(Kroupa et al. 1995; Bate et al. 1995, 2002; Kratter et al. 2002, 2006; Clarke 2009;
Offner et al. 2010; Lee et al. 2017; Moe \& Di Stefano 2017; Moe et al. 2019)

Gravitational Instability and Fragmentation within Disk:
$\mathrm{Q}_{\text {Toomre }}=\mathrm{c}_{\mathrm{s}}{ }^{2} \Omega / \pi \mathrm{G} \Sigma=3 \mathrm{ac}_{\mathrm{s}}{ }^{3} / \mathrm{GM}<1$

Turbulent Fragmentation of Molecular Cores:
Mach $=\sigma_{v} / c_{s}>1$

Wide Binaries:
a > 100 AU

Field Solar-type Primaries

Duquennoy \& Mayor 1991:
F7-G9 IV/V/VI, ~15 pc
Raghavan et al. 2010: F6-K3 IV/V, 25 pc
Tokovinin 2014:
F0-G9 IV/V, 67 pc
Log-normal period distribution peaking at a~50 AU

DM91 measured $\mathrm{F}_{\text {bin }}=57 \%$ binary fraction, while R10 and $T 14$ found $\mathrm{F}_{\text {bin }}=44 \%$

Reasons for $\Delta \mathrm{F}_{\text {bin }}=13 \%$ discrepancy:
~3\% due to missing late-M companions in R10 (Chini+ 2014; Moe \& Di Stefano 2017)
$\sim 2 \%$ due to sample selection (spectral types, luminosity classes)
~8\% due to WD companions added in DM91 (Moe \& Di Stefano 2017)
Gaia will find new WD companions to nearby stars as astrometric binaries.

Field M-dwarf Primaries

Fischer \& Marcy 1992; Basri et al. 2006; Law et al. 2008; Bergfors et al. 2010; Janson et al. 2012; Dieterich et al. 2012; Ward-Duong et al. 2015; Winters et al. 2019, $25 \mathrm{pc}, \mathrm{M}_{1}=0.075-\mathbf{0 . 6} \mathrm{M}_{\odot}$

Corrected binary fraction of $\mathrm{F}_{\text {bin }}=27 \% \pm 2 \%$ for all M -dwarfs, increasing from $F_{\text {bin }} \approx 20 \%$ for late-M to $F_{\text {bin }} \approx 35 \%$ for early-M (lower than $\mathrm{F}_{\text {bin }} \approx 45 \%$ for G -dwarfs)
Log-normal period distribution, peaking at a $=50 \mathrm{AU}$ for early-M (similar to G-dwarfs) and a = 7 AU for late-M

O-type Primaries

Binary interactions dominate the lives of massive stars (Sana et al. 2012).
~70\% of O stars have companions with $q>0.1$ within $a<10 \mathrm{AU}$.
~100\% of O stars in clusters (non-runaways) have companions within a < 100 au (Sana et al. 2014; Moe \& Di Stefano 2017).

Gaia can detect $q<0.1$ companions to massive stars, and will constrain massive binary properties as a function of age \& environment

Triple Star Fractions

While only 10\%-15\% of solar-type primaries are in triples (Raghavan et al. 2010;
Tokovinin 2014), most massive stars are in triples \& higher-ordered multiples (Sana et al. 2014; Moe \& Di Stefano 2017)

Every O-type primary has 2.1 ± 0.3 companions with $q>0.1$

Triple Star Hierarchies

Solar-type triples occupy the full parameter space of dynamically stable hierarchies $f\left(P_{\text {in }}, P_{\text {out }}>5 P_{\text {in }}\right)$, nearly consistent with random drawings from overall log-normal period distribution (Tokovinin 2014)

Gaia will be first to fully measure $f\left(P_{\text {in }}, P_{\text {out }}\right)$ for OBA primaries

Triple Star Mutual Inclinations

Most compact solar-type triples with $\mathrm{a}_{\text {out }}<50 \mathrm{AU}$ are coplanar ($\mathrm{i}<40^{\circ}$), while wide tertiaries with $\mathrm{a}_{\text {out }}>1,000 \mathrm{AU}$ have random orientations with respect to inner binary (Borkovits et al. 2016; Tokovinin 2017)

Gaia will help constrain $i_{\text {mutual }}\left(a_{i n}, a_{\text {out }}\right)$ for massive triples

Close Companions - Disk Fragmentation

"A triple protostar system formed via fragmentation of a gravitationally unstable disk" (Tobin et al. 2016)

ALMA observations of L1448 IRS3B reveal coplanar tertiary accreting from disk at $\mathrm{a}_{\text {out }} \sim 100 \mathrm{AU}$

Mind your Ps and Qs: $f(P, q) \neq f(P) f(q)$
(Moe \& Di Stefano 2017)

Excess fraction of twins with $q>0.95$

Power-law slope $\mathrm{f} \propto \mathrm{q}^{\gamma}$

Very close binaries have uniform q distribution with excess twin fraction (disk fragmentation and accretion), wide binaries are weighted toward small q (core fragmentation), and there is an M_{1} dependent transition between these regimes.

Based on Gaia 200-pc sample of CPM binaries, El-Badry et al. (submitted; arXiv:1906.10128) confirmed wide binaries are weighted toward small q, but also found a small but statistically significant excess twin fraction extending out to a ~ 5,000 AU.

We concluded very wide twins initially formed in the disk within a < 200 AU, but then were dynamically widened to a > 200 AU in their dense birth clusters.

Gaia DR3 spectroscopic and astrometric binaries will better constrain $f_{q}\left(M_{1}, P\right)$.

Dependence on Metallicity

B-type EBs in the SMC, LMC, and MW (Moe \& Di Stefano 2013)

Properties of close massive binaries are invariant across $-0.8<[\mathrm{Fe} / \mathrm{H}]<0.2$.

Close binary fraction of solar-type stars decreases significantly with metallicity (Moe et al. 2019).

All five samples/methods provide consistent trend!

But imaging reveals the wide (a > 200 AU) binary fraction of solar-type stars is metallicity invariant (Moe et al. 2019).

Utilizing Gaia common-proper-motion binaries with $[\mathrm{Fe} / \mathrm{H}]$ measurements from wide-field spectroscopic surveys, El-Badry \& Rix (2019) confirmed the metallicity dependence emerges below a < 200 AU.

Two Modes of Binary Star Formation (Moe et al. 2019)
Gravitational Instability and Fragmentation of Optically Thick Disks:

$$
\begin{gathered}
Q_{\text {Toomre }}=c_{s}^{2} \Omega / \pi G \Sigma=3 \mathrm{ac}_{\mathrm{s}}^{3} / \mathrm{GM}<1 ; \\
a<100 \mathrm{AU}
\end{gathered}
$$

With decreasing [$\mathrm{Fe} / \mathrm{H}]$, disks become less optically thick, become cooler, and fragment.
Massive disks of OB protostars have high accretion rates and always fragment, even at $[\mathrm{Fe} / \mathrm{H}]=0$

Gaia DR3 will fill in gaps within $f\left(M_{1}, P, Z\right)$ and explore dependence on X_{i}

Pre-MS Binaries

IR / radio observations of embedded class $0 / /$ protostars reveal an excess of companions beyond a > 500 AU , suggesting core fragmentation on large scales is efficient but then wide low-mass binaries are disrupted within $\sim 0.5 \mathrm{Myr}$ (Duchene et al. 2007; Connelley et al. 2008; Tobin et al. 2016; Moe \& Di Stefano 2017)

Kounkel et al. (2019) analyzed APOGEE spectra of $\sim 5,000$ T Tauri stars, and discovered ~ 400 binaries (SB2s from CCF and SB1s from RV variability).

Close binary fraction ($\mathrm{a}<10 \mathrm{AU}$) increases with luminosity (i.e., M_{1}), consistent with the field.

Separation distribution across $a=0.1-10 \mathrm{AU}$ matches field distribution.

Close binary properties of $M_{1}=0.3-3 M_{\odot}$ primaries set by $\sim 1 \mathrm{Myr}$!

AO and sparse aperture masking reveal an excess of young T Tauri binaries across a = 10-60 AU compared to the field (Duchene et al. 2018).

The consistency below a < 10 AU and across a = $60-500 \mathrm{AU}$ but large excess across a = 10-60 AU, even in Orion, is a major mystery!

Perhaps Gaia can help resolve discrepancy / discontinuity in $f(P, \tau, n)$?

Compact Remnant Companions to MS Stars

Regulus: a rapidly rotating B8IV star; $P=40$ day SB1, likely a WD companion

Census of confirmed WD companions closely orbiting BAFG stars incomplete beyond d > 10 pc (Holberg et al. 2016); Gaia will help

After correcting for incompleteness, $11 \% \pm 3 \%$ of field solar-type stars have WD companions, i.e., $\sim 20 \%$ of companions are WDs, and $30 \% \pm 10 \%$ of SB1s have WD companions (Moe \& Di Stefano 2017)

Malachi Regulus Moe
$\sim 30 \%$ of O stars are the products of binary evolution (de Mink et al. 2015), and $\sim 20 \%$ of OB "primaries" are actually the companions in which the true primaries have already evolved into NSs or BHs (Moe \& Di Stefano 2017)

Phase modulation of Kepler pulsating δ Scuti stars (older A/F dwarfs) reveal binary companions across a $=0.5-5 \mathrm{AU}, 22 \% \pm 6 \%$ of which are WDs with small eccentricities (Murphy, Moe et al. 2018)

Overall Theme

Disk Fragmentation: Close binaries with $\mathrm{a}<100 \mathrm{AU}$

Increases with M_{1}.
Compact coplanar triples. Uniform q \& excess twins.
Decreases with $[\mathrm{Fe} / \mathrm{H}]$.
Independent of τ and n .

Wide binaries with a > 100 AU

Independent of M_{1}.
Wide tertiaries randomly oriented.
Weighted toward $q=0.3 \&$ few twins.
Independent of $[\mathrm{Fe} / \mathrm{H}]$.
Decreases with τ and n .

Conclusion

Multiplicity statistics constitute a complicated parameter space:
$f\left(M_{1}, M_{2}, P, e,[M S, B D, W D, N S, B H],\left[M_{3}, P_{\text {out }}, i_{\text {mut }}\right],\left[Z, X_{i}\right],[\tau, n]\right)$

Gaia will explore new regions of this parameter space, providing new insights into binary star formation and evolution.

