The mass-ratio distribution of spectroscopic binaries along the main-sequence

Henri M.J. Boffin (ESO)
Dimitri Pourbaix (ULB)

Multiplicity is function of Primary Mass, M_{A}

Mass of primary, M_{A}

But is this the full
story?
What about stars that are secondaries?

What about mass ratio distribution?

Binary formation mechanisms? e.g. random pairing, $f(q)$ constant

Evolution of binary systems? e.g. twins population?

454 stars within 25 pc; F6-K3 SpT
Does $f(q)$ depend on M_{A} ?

Roughly flat distribution for q E [0.2 - 0.95]
Deficiency of low-mass companions
Excess of twins (?)

$\mathrm{S}_{\mathrm{B}}{ }^{9}: 9^{\text {th }}$ spectroscopic binary catalogue

Cross-correlated Gaia DR2 with the $\mathrm{S}_{\mathrm{B}}{ }^{9}$ catalogue to select all binary systems containing a main sequence primary, for which $\sigma_{\epsilon}<\Theta / 10$.

2926 systems: 1948 SB1; 978 SB2

$\mathrm{S}_{\mathrm{B}} 9$ sample

Cross-correlated Gaia DR2 with the $\mathrm{S}_{\mathrm{B}}{ }^{9}$ catalogue to select all binary systems containing a main sequence primary, for which $\sigma_{\epsilon}<\omega / 10$.

Used $\omega, G, B p-R p$ and $A g$ to create CMD diagram

SB1: 1948 systems 1143 with Ag 1067 with $\sigma_{\oplus}<\omega / 10$ 738 on MS

SB2: 978 systems 567 with Ag
534 with $\sigma_{\oplus}<\omega / 10$
488 on MS

需| Importance of Extinction - SB1

Importance of Extinction - SB2

Sb2 Non Corrected

Sb2 Corrected

K $\quad M=0.74 \pm 0.06 \mathrm{M} \odot$

Final sample

Only Main－sequence stars

SB1： 738 systems

G $M=0.95 \pm-0.05 \mathrm{M}$ •
F $M=1.18 \pm 0.08 \mathrm{M}$ 。
A $M=1.81 \pm 0.28 \mathrm{M}$ 。
B $M=3.82 \pm 1.18 \mathrm{M}$ 。
SB2： 488 systems

$\mathrm{S}_{\mathrm{B}}{ }^{9}$ sample

Cross-correlated Gaia DR2 with the $\mathrm{S}_{\mathrm{B}}{ }^{9}$ catalogue to select all binary systems containing a main sequence primary, for which $\sigma_{\epsilon}<\omega / 10$.

Used G, Bp-Rp and Ag to create CMD diagram

Interpolate BASTI tracks to get masses of primary

	SB1	SB2
K	$116(101)$	$41(26)$
G	$117(103)$	$67(34)$
F	$99(84)$	$65(23)$
A	$131(91)$	$151(64)$
B	$275(200)$	$164(97)$

Spectroscopic binaries: mass ratio

SB2: q is given

Spectroscopic binaries: mass ratio

SB2: q is given

$$
\left.f(M)=\frac{\left(M_{B} \sin i\right)^{3}}{\left(M_{A}+M_{B}\right)^{2}}=\frac{K_{A}^{3} P}{2 \pi G}\left(1-e^{2}\right)^{3}\right)^{3}
$$

Observables
M_{A} : Mass primary M_{B} : Mass secondary i : unknown inclination

Can get $q=M_{B} / M_{A}$ as a function of M_{A}
As we can assume \boldsymbol{i} is randomly distributed, one can determine the distribution of $f(q)$ with the Lucy-Richardson algorithm

Use Gaia to get M_{A}

Mass ratio distribution

Mass transfer systems?

Circular orbits could be result of

- Normal tidal evolution
- Mass transfer processes (hidden WDs)

Mass ratio distribution

需| Effect of orbital period

$$
P<50 d
$$

Short period orbits

P $>50 d$
Long period orbits

Gaia DR2 - MRD as fn of primary mass

Gaia DR2 - MRD as fn of primary mass

Multiplicity is function of Primary Mass, M_{A}

Mass of primary, MA

Majority of solar-like stars are in binaries!

Binarity of G, K, M stars may be similar and above 50\%

Boffin \& Pourbaix 17
See also Whitworth \& Lomax 15

Summary

- By cross-correlating SB9 catalogue with Gaia DR2, we determined the mass ratio distribution as a function of the primary mass: mostly uniform, with some trend from most massive stars to less massive ones
- The excess of twins seems related to A stars only and to short period systems
- There are many low-mass stars as secondaries and their binary fraction is therefore higher than generally thought
- This will provide hints on star formation.

Thank you

