

IMPACT OF BINARIES ON STELLAR EVOLUTION

Alain Jorissen

Institut d'Astronomie et d'Astrophysique Université libre de Bruxelles (Belgium)

Collaborators: H. Boffin, A. Escorza, T. Merle, D. Pourbaix, L. Siess, S. Van Eck, H. Van Winckel

HERMES / Mercator radial-velocity data

IMPACT OF BINARIES ON STELLAR EVOLUTION

Classes of stars for which duplicity (or non-duplicity!) is essential:

□ Algols & blue stragglers

□ Barium (dwarfs, sgCH & giants)

□ Post-RGB, He WDs & sdB

- □ R stars (no binaries)
- □ (Asymmetric) Planetary Nebulae
- □ Type Ia SN, gravitational-wave emitters...

WD 15.

0

0

WD

15.

(case B) Algols & blue stragglers

= One of the first historical cases of impact of binarity on stellar evolution !

Main sequence

WD

0

0

Evolution of Algols (BINSTAR code Siess et al. 2014, A&A 565, A57)

Case B mass transfer : $6 M_0 + 3.6 M_0$, P = 2.5 d

Evolution of Algols (BINSTAR code Siess et al. 2014, A&A 565, A57)

Case B mass transfer : $6 M_o + 3.6 M_o$, P = 2.5 d

Evolution of Algols (BINSTAR code Siess et al. 2014, A&A 565, A57)

Table 2. Observational prototypes for the different classes introduced in Sect. 4.2.1 and Fig. 8. Sp_d (Sp_g) is the spectral type of the donor (gainer). The gainer of W Ser is embedded in an accretion disc and its spectral type is unknown but believed to be B-A.

Theoretical class	Prototype	M_d + M_g (M_{\odot})	$q = M_d / M_g$	$\dot{M}_{ m RLOF}~(m M_{\odot}~ m yr^{-1})$	Period (d)	$Sp_d + Sp_g$	Ref.
Class I	SV Cen	8.56 + 6.05	1.41	1.626×10 ⁻⁴	1.6585	B1 + B4.5	1,2,4
	UX Mon	3.90 + 3.38	1.15	5.46×10 ⁻⁶	5.904	A7p + G2p	3
Class II	β Lyr	4.25 + 14.1	0.30	3.440×10 ⁻⁵	12.9138	B6-B8 II, + B0.5 V	1,2,5
	W Ser	0.970 + 1.510	0.64	~1×10 ⁻⁷	14.154	F5III + B-A (emb.)	6,8
Class III	β Per	0.81 + 3.7	0.21	~1×10 ⁻¹¹	2.8673	K4 + B8	1,7

References. (1) van Rensbergen et al. (2011) and references herein; (2) van Rensbergen et al. (2010a); (3) Sudar et al. (2011); (4) Wilson & Starr (1976); (5) Lomax et al. (2012); (6) Budding et al. (2004); (7) Giuricin et al. (1983); (8) Piirola et al. (2005): mass-transfer rate derived from period-change rate ($\dot{P}/P = 14 \text{ s yr}^{-1}$) assuming a conservative mass transfer.

Evolution of Algols: Detection of circumstellar matter using WISE and 2MASS photometry

Deschamps et al. 2015, A&A 577, A55

Evolution of Algols: Detection of circumstellar matter

Mayer et al., 2016, A&A 587, A30

- (case B) Algols & blue stragglers = One of the first historical cases of impact of binarity on stellar
- evolution !

Main sequence

0

0

WD

Detecting Blue stragglers

If case C mass transfer from AGB, then barium enhancement predicted

WD

Detecting blue stragglers barium stars

Milliman, Mathieu & Schuler, 2015, AJ 150, 84

Detecting blue stragglers barium stars

Just a second problem: Same e – P diagram but not all are barium stars

Milliman, Cambridge conference on binary stars, 2015

Detecting blue stragglers (barium stars)

Especially promising in the Gaia era

Fig. 11. Several globular clusters selected to show a clearly defined and very different horizontal branch, sorted by decreasing metallicity. *Panel a*: NGC 104 (47 Tuc), *panel b*: NGC 6362, *panel c*: NGC 5272, and *panel d*: NGC 6397.

Gaia collaboration, Babusiaux et al. 2018, A&A 616, A10

Locating the "barium-enhanced" zoo in the HR diagram

Locating the "barium-enhanced" zoo in the HR diagram: A zoom on dwarf and subgiants Escorza et al. 2019, arXiv:1904.04095

Different class names but same location in the HRD!

→ Necessity to re-classify the peculiar stars in a homogeneous manner, especially in view of the forthcoming/existing large surveys

Locating the "barium-enhanced" zoo in the HR diagram: A zoom on dwarf and subgiants Escorza et al. 2019, arXiv:1904.04095

CAVEAT : Are the DR2 parallaxes of binary stars reliable?

Comparing single-star parallaxes with binary-star parallaxes (pre-DR3)

Pourbaix, this conference

CAVEAT : Some DR2 (single-star-model) parallaxes of binary stars may be unreliable!

Locating the "barium-enhanced" zoo in the HR diagram:

CAVEAT : where are the inaccurate parallaxes located ?

Locating the "barium-enhanced" zoo in the HR diagram: CAVEAT : Are the DR2 parallaxes of binary stars reliable ?

Black dots = Barium stars

0

0

One prototypical case: IP Eri (see Merle et al. 2014 A&A 567, A30) EUV source by ROSAT and EUVE satellites

 $T_{eff} = 29\ 290\ K$, $\log g = 7.5 \longrightarrow M = 0.43\ M_{\odot} \longrightarrow He\ WD$

subgiant K0 companion in a long-period, eccentric orbit P = 1071 d, e = 0.25

Very difficult to produce from standard binary evolution models

because RLOF forbidden (predicts short P and e = 0 !)

Fig. 9. Evolutionary channels for the formation of a He WD. The dashed lines refer to channels where the eccentricity can be preserved (see text for details).

Siess et al. 2014, A&A 565, A57

He WDs and their sdB analogs

The case of IP Eri (sg KO + He WD)

Siess et al. 2014, A&A 565, A57

IMPACT OF BINARIES ON STELLAR EVOLUTION :

SUBSTANTIAL PROGRESS IN OUR UNDERSTANDING!

Algols & blue stragglers :
I non conservative mass transfer

□ Barium (g, d & sgCH) :

clarification needed in classification

□ Post-RGB, He WDs & sdB :

found possible evolutionary channel even for long P, large e systems