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ABSTRACT

Context. Several observational pieces of evidence indicate that specific evolutionary channels that involve Roche lobe overflow are
not correctly accounted for by the classical Roche model.
Aims. We generalise the concept of the Roche lobe in the presence of extra forces (caused by radiation pressure or pulsations). By
computing the distortion of the equipotential surfaces, we are able to evaluate the impact of these perturbing forces on the stability of
Roche lobe overflow (RLOF).
Methods. Radiative forces are parametrised through the constant reduction factor that they impose on the gravitational force from
the radiating star (neglecting any shielding in the case of high optical thickness). Forces imparted by pulsation are derived from the
velocity profile of the wind that they trigger.
Results. We provide analytical expressions to compute the generalised Roche radius. Depending on the extra force, the Roche lobe
radius may either stay unchanged, become smaller, or even become meaningless (in the presence of a radiatively- or pulsation-driven
wind). There is little impact on the RLOF stability.
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1. Introduction

The Roche model has been widely used to infer the outcome of
binary star evolution. In this model, only the gravitational and
centrifugal forces are accounted for to compute the equipoten-
tial surfaces. However, if other forces are present in the sys-
tem, like those responsible for mass loss, they should be in-
cluded in the description as well. The modification of the usual
Roche model was first pointed out by Schuerman (1972) in the
context of binary systems involving early-type main sequence
stars with a strong wind. The idea was further explored in var-
ious directions by Kondo & McCluskey (1976), Vanbeveren
(1977, 1978), Friend & Castor (1982), Djurasevic (1986), Zhou
& Leung (1988), Huang & Taam (1990), Drechsel et al. (1995),
Frankowski & Tylenda (2001), Phillips & Podsiadlowski (2002)
and Owocki (2007). In the present paper, we investigate in a
more systematic way the situations where the Roche model
should be modified by considering the different physical pro-
cesses driving stellar winds, that we briefly describe in Sect. 2.

The Roche model is generally used to answer two different
questions, namely: (i) What is the flow geometry? (ii) Is the star
filling its Roche lobe? The first question is related to the geome-
try of the equipotentials (and to the Coriolis force). One impor-
tant modification of the equipotential geometry which can arise
in the presence of an extra force pervading all space (like ra-
diation pressure), is that the equipotentials open up in the di-
rection of the external Lagrangian point, thus possibly allow-
ing the matter ejected by the mass-losing component to form a
circumbinary disc. This issue is important in the framework of
binary evolution involving low- and intermediate-mass compo-
nents where the formation of a circumbinary disc seems to be

very common (see de Ruyter et al. 2006; Frankowski & Jorissen
2007; Frankowski 2009).

The second question corresponds to the Roche-lobe overflow
(RLOF) criterion, which involves the comparison of the Roche
radius with the stellar radius. In the present paper we show how,
depending on the physical process driving the wind, the Roche
radius may either be unchanged with respect to the classical
Roche model, become smaller, or even become meaningless.
This will depend on the value of the extra force at the stellar sur-
face (in contrast to the first question, an answer to which requires
the knowledge of the force everywhere within the system). In a
mass-losing star, the photospheric radius itself may become ill-
defined, thus complicating the use of the RLOF criterion (see
Sect. 7.4).

Both issues (the equipotential geometry and the RLOF crite-
rion) will be addressed in the present paper for the generalised
Roche model when radiation pressure or pulsations play a role
(Sect. 3). The way to correctly account for radiation pressure is
discussed in Sect. 4. Typical values for the radiation pressure
at the surface of various classes of stars are given in Sect. 5,
and the corresponding shapes of the equipotentials are displayed
in Sect. 6. A numerical fit to the Roche radius is provided in
Sect. 7.1, generalising Eggleton’s formula (Eggleton 1983) to
situations where a radiation-pressure force is present. The ne-
cessity to abandon the Roche-lobe concept in the case of stars
suffering from radiatively- or pulsation-driven wind mass loss is
demonstrated in Sect. 7.4. Conclusions are drawn in Sect. 8.

2. The different modes of wind mass loss

Holzer & MacGregor (1985), Schatzman et al. (1993), Lamers
(1997), Willson (2000) and Owocki (2004) have reviewed the
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different types of winds existing across the Hertzsprung-Russell
diagram according to their respective driving mechanisms.
These mechanisms may be grouped in three broad classes:
radiation-driven winds (associated with high-luminosity ob-
jects), pulsation-initiated winds, and Alfvén wave-induced
winds.

The first class includes line-driven winds, operating in lu-
minous hot stars (OB stars, and Wolf-Rayet – WR – stars as
well) on resonance and subordinate lines (Castor et al. 1975;
Abbott 1982). Fast winds with terminal velocities of the order
of 500−3000 km s−1 are generated (Kudritzki & Puls 2000). At
the same luminosities as O stars, WR stars have higher mass-loss
rates, so another mechanism – like pulsation-driven mass loss, or
multiple scattering of photons in an optically-thick wind with an
ionisation stratification – is probably adding to radiation pressure
on atomic lines (Glatzel et al. 1993; Owocki & Gayley 1999;
Nugis & Lamers 2000; Owocki 2004). Dust-driven winds belong
to the same category as radiation-driven winds, but operate in-
stead in luminous cool stars on the asymptotic giant branch and
require wind densities high enough to couple dust with gas (Gail
& Sedlmayr 1987; Lamers 1997; Wachter et al. 2002; Schröder
et al. 2003; Sandin & Höfner 2003; Sandin 2008). Wind terminal
velocities are small, of the order of 10−15 km s−1. An impor-
tant specificity of cool-star winds is that the driving force only
slightly exceeds the gravitational attraction, as apparent from
their low terminal velocities.

The dust formation requires another process to lift the mat-
ter high enough above the photosphere in the region where the
temperature is less than 1500 K. This can be done through shock
waves associated with stellar pulsation (Bowen 1988), like in
Mira or semi-regular variables.

Alfvén waves are the other main class of waves driving
winds in stars with open magnetic field lines. This wind mecha-
nism is important for stars that are not luminous enough to have
a strong radiation pressure, i.e., magnetic A, F, G, K and M stars
with luminosities lower than about 50 L� (see Sect. 5). It is the
leading candidate to account for the solar wind. This driving pro-
cess has the important property of being a local phenomenon
which is not derived from a potential, unlike radiation pressure.

3. The effective potential

In the Roche model, the two components of a binary system are
considered as point sources in circular orbits and in synchronous
rotation with the orbital motion. It is then possible to define a
reference frame in uniform rotation about the centre of mass of
the system in which the two stars are at rest. When distances are
expressed in units of the orbital separation, time in units of the
orbital period and masses in units of the total mass (M1 + M2),
the effective potential of the system, including the gravitational
and the centrifugal potentials, is given by

Φ = − μ
r1
− 1 − μ

r2
− x2 + y2

2
(1)

where

μ =
M1

M1 + M2

and

r1 =
(
(x + 1 − μ)2 + y2 + z2

)1/2

r2 =
(
(x − μ)2 + y2 + z2

)1/2

are respectively the distance of a test particle located at (x, y, z)
to the primary star (labelled “1” and located at x1 = μ − 1) and
to the companion (labelled “2” and located at x2 = μ). The cen-
tre of mass is located at the origin of the coordinate system. The
mass of the test particle is supposed to be small enough not to
disturb the potential. When additional forces derived from a po-
tential are present in the system (other than the gravitational and
centrifugal ones), the effective potential is

Φ = Φextra − μr1
− 1 − μ

r2
− x2 + y2

2
·

When the extra force is caused by radiation pressure, Φextra is
easy to evaluate because the radiation force has the same 1/r2

dependence on the distance as the gravitational attraction and
it also pervades all space. The validity of this simple model is
further discussed in Sect. 4. The ratio f of the radiation to the
gravitational force of star 1

f ≡ −1
ρ

dPrad

dr r1

⎛⎜⎜⎜⎜⎝GM1

r2
1

⎞⎟⎟⎟⎟⎠
−1

(2)

is independent of r1 provided that the radiation flux at position r1
emanating from star 1 – denoted Fν,1(r1) – and appearing in the
expression

dPrad

dr r1

= −1
c

∫ ∞

0
κν ρ Fν,1(r1) dν, (3)

may be replaced by Lν,1/(4πr2
1), so that

f =
1

4πcGM1

∫ ∞

0
κν Lν,1 dν. (4)

In the above equations, ρ is the density of the circumstellar
matter, κν is the absorption coefficient per unit mass at fre-
quency ν, c the speed of light, and Lν,1 the luminosity of star 1
in the frequency range (ν, ν + dν). We will ignore radiation
shielding and assume that the medium is optically thin (see
also Huang & Taam 1990; Drechsel et al. 1995). If radiation
does not reach thermal equilibrium with circumstellar matter
(i.e., the matter is optically thin), the radiation luminosity re-
mains approximately constant all over, and the radiation flux can
be expressed as Fν,1(r1) = Lν,1/4πr2

1, which may be rewritten
Fν,1(r1) = F∗ν,1(R1/r1)2, F∗ν,1 being the radiation flux emitted per
unit surface by the star of radius R1. If that star is tidally dis-
torted, limb- and gravity-darkened, a rigourous treatment would
imply that Eq. (3) depends on the spherical coordinates θ, φ since
the flux irradiated by star 1 in a given direction defined by θ, φ
will now depend on these variables. The inclusion of these com-
plications is beyond the scope of this paper, but they are not ex-
pected to alter our general conclusions. It is assumed as well
that κν does not depend strongly on the optical depth τ in the
wind, i.e. that the ionisation state and/or level population of the
gas do not change. This issue has been thoroughly studied in the
context of radiatively-driven hot-star winds by Abbott (1982),
Pauldrach et al. (1986), Shimada et al. (1994), Gayley (1995),
Lamers (1997) and Puls et al. (2000). We thus consider here an
idealised situation where f is assumed constant. Under these hy-
potheses, the effective gravity of the mass-losing star is then re-
duced by a factor (1− f ), the same everywhere, and the effective
potential becomes

Φ = −μ(1 − f )
r1

− 1 − μ
r2
− x2 + y2

2
· (5)
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However, even though the equipotentials give an idea of the flow
geometry, its precise description is only given by the equation of
motion:

d2r
dt2
= −1
ρ
∇P − 2Ω × dr

dt
− ∇Φ + F′, (6)

which includes the important Coriolis term. In the above expres-
sion, P is the gas pressure (this term can be important in the case
of very dense winds like in Wolf-Rayet stars), Ω is the angu-
lar velocity, F′ is the extra force and Φ is the Roche potential
(Eq. (1)). This equation of motion will not be used in the present
paper.

4. How to correctly account for radiation pressure

The impact of radiation pressure on the shape of the equipoten-
tial surfaces has been discussed by several authors (Schuerman
1972; Huang & Taam 1990; Drechsel et al. 1995; Howarth 1997;
Maeder & Meynet 2000; Howarth & Smith 2001; Phillips &
Podsiadlowski 2002; Owocki 2007), in slightly different con-
texts, and there has been some controversy as to whether or not
this effect modifies the Roche geometry. To make the discus-
sion clear, one should distinguish three different situations: (i)
the effect of radiation pressure on the matter outside the stars
and flowing in the binary system; (ii) the impact of the exter-
nal radiation field (from the companion star) on the equilibrium
shape of the irradiated star; and (iii) the effect of the star’s own
radiation pressure on its equilibrium configuration.

The first effect is relevant in deriving the flow geometry, and
the radiation pressure must always be included in the computa-
tion. Complications here are only related to possible shielding
effects. In the present paper, we consider the situation where ra-
diation pressure comes only from the primary and neglect any
shielding by the companion star or by the circumstellar mate-
rial which remains optically thin everywhere. Case (ii) has been
considered by Drechsel et al. (1995), Phillips & Podsiadlowski
(2002) and Owocki (2007) in detail. In the present approach, it
is not accounted for and would require the incorporation of a
new (1 − f ′) factor reducing the gravity of the star labelled 2
in Eq. (5). Drechsel et al. (1995) and Phillips & Podsiadlowski
(2002) have performed detailed numerical calculations for this
situation, including geometrical shielding effects (not consid-
ered in our simple analytical approach) but the impact is usually
small. Case (iii) is conceptually more intricate and over the years
has become controversial (Friend & Castor 1982; Howarth 1997;
Maeder & Meynet 2000; Howarth & Smith 2001). To under-
stand why, one should first distinguish the optically-thick from
the optically-thin regimes, following the insightful discussion
of Friend & Castor (1982). In optically-thick regions, the diffu-
sion approximation for the radiative transfer may be used, result-
ing in an isotropic pressure with the (thermal equilibrium) value
(1/3)aT 4. Therefore, in the hydrostatic layers below the stellar
photosphere where this regime holds (this excludes WR stars),
the effect of radiation should be included in the pressure term in
the hydrostatic equilibrium equation and the gravitational poten-
tial is unmodified. On the other hand, in an optically-thin region,
the radiation field is partially decoupled from the gas and the
stellar flux can be treated in a free-streaming approximation. In
this regime, the radiative flux is radial and proportional to 1/r2

and acts as a repulsive force that reduces the gravitational force
by a factor (1 − f ).

The diffusion and streaming approximations hold respec-
tively deep within the star and in the outer layers of wind.

x
−0.2−0.4−0.6−0.8−1

y f>0f=00

0.2

0.4

−0.2

−0.4

Fig. 1. A giant star with an extended atmosphere (grey region, on an ex-
aggerated scale). As discussed in the text, in the optically-thin (τ < 2/3)
layers of the atmosphere, the ratio f of the radiative force to gravi-
tational attraction is positive and affects the Roche potential (dashed
lines). Within the photosphere, the matter is optically thick, so that
f = 0 and the classical Roche potential applies (solid lines). The part of
the atmosphere located above its critical Roche lobe will flow through
the companion (depicted by the arrows).

Near the photosphere or in the surface layers where the hydro-
static equilibrium condition breaks down (like in WR stars, see
Sect. 7.4) the situation is more ambiguous as von Zeipel’s theo-
rem does not apply (Howarth 1997).

To illustrate this dichotomy, consider Fig. 1 which shows the
Roche-lobe filling criterion in a giant star at ( f = 0) and above
( f > 0) the photosphere where the radiation pressure modifies
the potential. The unmodified Roche potential (Eq. (1)) should
be used for the subphotospheric matter, whereas the modified
potential (Eq. (5)) should be used above the photosphere (grey
area on Fig. 1). Since the modified potential leads to a smaller
critical surface (as will be shown in Sect. 7.1), the situation may
arise where the photosphere does not fill its Roche lobe, but the
supra-photospheric matter does, especially for (super) giant stars
with extended atmospheres. These supra-photospheric shells are
removed from the star, and in the case of a giant star with a
convective envelope, this removal will cause the photosphere
to expand on a thermal time scale (Ritter 1996). Therefore,
even though the photosphere itself does not fill its own Roche
lobe, the consideration of the modified Roche potential alters
the evolution, at least for giant stars. This distinction between
dwarfs and giants is important, because empirical arguments
call for the use of a modified Roche equipotential for giants,
but not for dwarfs. Howarth (1997) has given convincing ar-
guments that the unmodified potential should be used whenever
there is evidence for gravity darkening (a direct consequence of
von Zeipel’s theorem), as is the case for dwarf stars in binary sys-
tems (Anderson & Shu 1977; Rafert & Twigg 1980). The situa-
tion is however different for giants: an important empirical mo-
tivation for considering the case f > 0 is that it may account for
the fact that some giant stars exhibit ellipsoidal variations (due
to non-sphericity) despite small (classical) Roche-filling factors.
Those ellipsoidal variables would appear enigmatic without the
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presence of an additional force reducing the actual Roche radius
and disturbing the stellar shape. As it will be shown in Sect. 7.1,
the modified Roche radius (for f > 0) is smaller than the classi-
cal one (for f = 0). Therefore, stars nearly filling their Roche
lobe with f > 0 would be far from filling their lobe if that
filling factor were estimated with the traditional formula cor-
responding to f = 0. This is probably what happens for the
13 s-type symbiotic systems with ellipsoidal variations detected
by Mikołajewska (2007), which have a (classical) Roche filling
factor of only 0.4−0.5. Based on the analysis of the orbital circu-
larisation in a sample of binary systems with M-giant primaries,
Frankowski et al. (2009) find that these giants also do not fill
more than ∼0.5 of their classical Roche lobes. Again, the ex-
planation may lie in a decrease in the Roche radius below its
classical value.

5. Typical f values

We now evaluate the f factor using the Castor-Abbott-Klein
(Castor et al. 1975, hereafter CAK) theory of line-driven winds.
Let ggrav(r) = G M

r2 be the gravitational acceleration at distance r
from the stellar centre, and

grad ≡ gTh(1 + F (τ)) =
κeL

4π c r2
(1 + F (τ)), (7)

be the sum of the radiative accelerations due to Thomson scatter-
ing (gTh) and to an ensemble of lines (gTh F (τ)), where F is the
so-called “force multiplier”. In the above relation, κe = σe ne/ρ
is the opacity coefficient per unit mass for Thomson scatter-
ing, σe is the corresponding Thomson cross section (6.65 ×
10−25 cm−2), ne is the electron number density and ρ is the den-
sity of the wind. If the wind is fully ionised, κe = σe

1
mH

〈
Z
A

〉
∼

0.2(1 + X) cm2 g−1, where mH is the hydrogen mass. The
force multiplier has been computed by CAK, Abbott (1982),
Pauldrach et al. (1986), Shimada et al. (1994), Gayley (1995),
Lamers (1997) and Puls et al. (2000) for various wind thermo-
dynamical conditions. It turns out to be very small at optical
depths close to one because of the “saturation effect”: radiation
with frequencies matching those of atomic transitions are effi-
ciently removed from the flux at the base of the photosphere and
no flux at those frequencies is left further up in a static atmo-
sphere to accelerate matter. Of course, the situation changes in
the presence of a wind, since the associated velocity gradient will
then induce a Doppler shift of the line frequencies. At low op-
tical depths (i.e., higher up in the expanding atmosphere), when
all lines become optically thin, F (τ) becomes very large, and
reaches asymptotic values up to about 2000 (see e.g., Table 2 of
Abbott 1982, also Gayley 1995).

Using the Eddington parameter

Γ =
κe L

4π c G M
(8)

we find that

f = Γ (1 + F ). (9)

In Table 1, we have listed the f and Γ values for stars along
the main sequence. The numbers are obtained by considering an
optically-thin medium, where F reaches its maximum value of
about 2000 (Abbott 1982; Gayley 1995).

The threshold f = 1 is found around spectral type A0 (cor-
responding to stars with luminosities less than about 50 L�), and
this result is consistent with empirical arguments stating that the

Table 1. The Eddington parameter Γ (Eq. (8)) for stars along the main
sequence, adopting κe = 0.35 cm2 g−1. Since F < 2000 (Abbott 1982),
fmax = 2000Γ.

Sp. Typ. log (L/L�) M Γ fmax

(M�)
O5V 5.95 60.0 4.0 × 10−1 807.
B0V 4.77 17.5 9.2 × 10−2 184.
B5V 2.97 5.9 4.3 × 10−3 8.68
B8V 2.33 3.8 1.5 × 10−3 3.06
A0V 1.77 2.9 5.5 × 10−4 1.10
A5V 1.19 2.0 2.1 × 10−4 0.42
F0V 0.86 1.6 1.3 × 10−4 0.25
F5V 0.51 1.4 6.4 × 10−5 0.13

Luminosities and masses are from Cox (2000).

Table 2. The f parameter for M = 1 M� K and M giants and subgiants
with C/O = 0.5, at τRoss = 2/3.

Teff (K) log g f
5000 0 0.97
4000 0 0.43
3000 0 0.18
5000 3 9.6 × 10−4

4000 3 4.3 × 10−4

3000 3 1.2 × 10−4

peculiarities of Am stars cannot survive if the mass loss is too
strong (Michaud et al. 1983; Michaud & Charland 1986; Lemke
1990; Babel 1992). Furthermore, the very existence of Am stars
demonstrates the importance of the radiative acceleration on the
distribution of the various chemical elements of these stars (e.g.
Hui-Bon-Hoa et al. 2001; Alecian & LeBlanc 2002).

For late-type stars, the CAK model cannot be used because
this model does not include the relevant transitions, especially
molecular lines which may contribute significantly to the radia-
tive driving force (Jorgensen & Johnson 1992). Therefore, ra-
diative accelerations for late-type stars have been taken from the
MARCS model atmospheres (Gustafsson et al. 2008) for K and
M giants. For these stars, the radiation pressure is dominated by
the contribution of the near-infrared continuum where they emit
most of their radiation. The corresponding f values are listed in
Table 2.

For AGB stars with still higher luminosities than those con-
sidered in Table 2, the radiation driving force is now dominated
by absorption and scattering in molecular lines, yielding values
of f as large as 0.15 for C-type stars with C/O = 2, log g = −1
and Teff = 2500 K (Elitzur et al. 1989; Jorgensen & Johnson
1992).

In the next sections, the values of f quoted above will be
applied to different astrophysical situations. It has to be made
very clear that one should distinguish situations involving RLOF
(Sect. 7) from situations involving modifications of the geome-
try of the equipotential surfaces far above the photosphere of
the mass-losing star (Sect. 6). Although in the latter case, the
f values provided in Table 1 may be used without restriction,
the situation is more complicated in the former case. This is be-
cause the RLOF criterion involves photospheric layers, and we
have argued in Sect. 4 that non-zero f values associated with
radiation pressure do not usually alter the stellar equilibrium
configuration (according to the von Zeipel theorem), except in
special circumstances involving giant stars. The two situations
are therefore discussed in separate sections below.
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Φ

Fig. 2. Cross-sections through the effective equipotential surfaces
(Eq. (5)) along the line joining the two stars, for μ = 1/3. The mass-
losing star (located at x1 = −2/3) is the less massive component and has
a (dimensionless) radius of 0.1. Three cases are depicted: f = 0 (solid
line); f = 0.7 (short-dashed line; note that the Roche lobe is decreasing
compared to the case f = 0); f = 1.1 (long-dashed line: there is no
Roche lobe any longer).

6. The modified Roche equipotentials

Figure 2 presents sections through the effective equipotential
surfaces (Eq. (5)) along the line joining the two stars, for μ =
1/3, i.e. the mass-losing star (located at x1 = −2/3) is the less
massive component, and for three different values of f : f = 0
(solid line), f = 0.7 (short-dashed line), and f = 1.1 (long-
dashed line). The first case corresponds to a situation with no
extra force, the second to a situation where the extra force is
present but not sufficient to drive mass loss (note that the Roche
lobe is becoming smaller as compared to the case f = 0), and
the third case corresponds to a situation where the extra-force is
actually driving the mass loss. Note that in this case, there is no
longer a Roche lobe.

Figure 3 presents the different families of equipotentials as a
function of f and μ, when f < 1. Panels b and c correspond to
the critical configurations where the Lagrangian points L2 and L3
or L1 and L2 are located on the same equipotentials. These situ-
ations are encountered for the specific values of f denoted f1(μ)
and f2(μ), respectively. These functions are approximated by the
following expressions with a relative error smaller than 1% for
f1(μ) and 2% (when μ ≤ 0.97) for f2(μ):

f1(μ) = (1 − 2 μ)
(
1 − 0.80 μ1/2 + 0.82 μ

)
(10)

f2(μ) = (1 − μ)
(
1 − 0.72 μ1/2 + 0.66 μ3/2 + μ17

)
. (11)

The term μ17 is necessary to obtain a good fit to f2(μ) when μ
approaches 1.

The different regions delineated by f1 and f2 in Fig. 4 corre-
spond to different equipotential topologies. Systems with f < f1,
f = f1, f1 < f ≤ f2 and f > f2 are topologically similar to cases
displayed in Fig. 3 in panels a, b, c and d, respectively. In the last
case (panel d), the Roche lobes of the two components do not be-
long to the same equipotential. In contrast to the standard case,

the matter ejected by the primary is not necessarily transferred
directly into the Roche lobe of the companion, but all or a frac-
tion of it may instead feed a circumbinary disc. As mentioned in
Sect. 1, this issue is important as such discs are very common in
binaries involving low- and intermediate-mass components. The
Coriolis force, which is not conservative, also plays a major role
in the formation of such discs, as shown by numerical simula-
tions (Theuns & Jorissen 1993; Mastrodemos & Morris 1998,
1999; Sytov et al. 2009).

7. The RLOF criterion

7.1. The modified Roche radius

A generalisation to the cases 0 ≤ f ≤ 1 of the Eggleton (1983)
formula for the radius of a sphere with the same volume as the
Roche lobe, is given by

R(q, f ) ≡ RR(q, f )
a

=
A( f ) q2/3

B( f ) q2/3 + ln
(
1 + C( f ) q1/3

) (12)

where

A( f ) = (1 − f )1/3(0.49 + 0.25 f + 0.35 f 2 − 0.59 f 3 + 0.37 f 4),
B( f ) = 0.6 + 0.3 f ,
C( f ) = 1 + f ,

q ≡ M1/M2 is the mass ratio of the two components (star 1
being the one with non-negligible radiation pressure) and a is
the orbital separation. For f = 0, the Eggleton (1983) expression
is recovered. Figure 5 shows the Roche radius as a function of
the mass ratio q for the values f = 0, f = 0.5 and f = 0.9.
The Roche radius is clearly smaller in the presence of radiation
pressure and is reduced by a factor of∼2 between the cases f = 0
and f = 0.9. The Roche lobe vanishes (and its radius thus goes to
zero) when the radiation force becomes equal to the gravitational
attraction (i.e. f = 1).

The analytical fit to the Roche radius as approximated by
Eq. (12) is accurate to better than 3% over the extended range
0.1 ≤ q ≤ ∞ and 0 ≤ f ≤ 0.95. Outside this parameter range,
the relative error is less than 7%. The fit is based on numeri-
cal results obtained with the method outlined by Huang & Taam
(1990). We emphasize once again that, according to the dis-
cussion of Sect. 4, the Roche radius expressed by Eq. (12) ap-
plies only to stars with an extended atmosphere where the free-
streaming approximation holds for the radiation field.

7.2. RLOF stability

We now evaluate the impact of the above modifications on the
RLOF stability. In the Roche model, the stability condition im-
poses that, when the star fills its Roche lobe, subsequent mass
loss does not lead to a runaway situation. It is expressed by the
condition ζR < ζ, where

ζR ≡ d ln RR

d ln M1
(13)

and

ζ ≡ d ln R1

d ln M1
(14)

are the Roche-lobe mass-radius exponent and the mass-radius
exponent of the donor, respectively. A star responds to mass loss
on two timescales. The immediate response is on the adiabatic
time scale (τdyn), after which hydrostatic equilibrium is restored
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but negligible heat transport has occurred. The mass-radius ex-
ponent characterizing this adiabatic readjustment is denoted by
ζad. On the other hand, thermal equilibrium is recovered on the
Kelvin-Helmoltz time scale (τKH) and is characterised by the
exponent ζth. The adiabatic and thermal stability conditions be-
come respectively

ζR < ζad (15)

and

ζR < ζth. (16)

If neither of these conditions is satisfied, mass transfer proceeds
on the fastest of the two timescales.

To estimate ζR, Soberman et al. (1997) (see also Jorissen
2003) assume that a fraction α of the mass lost in the wind es-
capes to infinity, that a fraction η is accreted by the companion
and the remaining δ = 1 − α − η goes into feeding a circumbi-
nary disc of radius ar = γ

2a. In this framework the Roche-lobe
mass-radius exponent is

ζR = 2

(
α

1 + q
+ γδ(1 + q) − λ

)
+

q
1 + q

(1 − η)

+ 2(ηq − 1) +
d lnR
d ln q

(1 + ηq) , (17)

where λ ∼ 0.05 according to the hydrodynamical simulations of
Theuns et al. (1996).

0.2

RR

0.8 10.60.40

a

q

0.3

0.2

0.1

0

Fig. 5. The normalised Roche radius RR/a (where a is the orbital sepa-
ration) as a function of the mass ratio (q ≡ M1/M2) for the cases f = 0
(solid line), f = 0.5 (long-dashed line) and f = 0.9 (short-dashed line).

When an extra force is present, the term (d lnR/d ln q) in-
creases and may possibly destabilise the system. However, the
effect is small (<10% for f ranging between 0 and 0.9) and the
stability condition remains always dominated by the first three
terms of Eq. (17), which depend on the efficiency of mass trans-
fer through the parameters η, δ and γ. This is apparent from
Fig. 4 of Soberman et al. (1997) or Fig. 9.14 of Jorissen (2003).
The direct effect of the extra force on RLOF stability is conse-
quently negligible.

7.3. Critical period

An interesting application of Eq. (12) is related to the critical
period Pcrit, the orbital period below which RLOF occurs, given
by (Eggleton 2006)

Pcrit =

(
4π2R3

GM

)1/2

R(q, f )−3/2

∼ 0.1159

(
R3(R�)
M(M�)

)1/2

R(q, f )−3/2 (days) , (18)

where M = M1+M2. Pcrit increases strongly when an extra force
is present as shown in Fig. 6. This means that RLOF, either sta-
ble or not, would occur at a longer orbital period than inferred
from the size of the classical Roche lobe. Such an effect of the
extra force (with an estimated f = 0.65–0.85) shrinking the ef-
fective Roche lobe was offered by Frankowski & Tylenda (2001)
as an explanation for the symbiotic stars “avoiding” filling their
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Roche lobes (Mürset & Schmid 1999). As noted in Sect. 4, it
was also discovered that a number of symbiotics exhibit ellip-
soidal variations, apparently being tidally distorted despite not
quite filling their classical Roche lobes (Mikołajewska 2007).
Observations of the orbital circularisation in a sample of bina-
ries with M giant primaries supply another possible example of
this effect: these giants do not fill more than ∼0.5 of their classi-
cal Roche lobe (Frankowski et al. 2009). If this interpretation of
these system properties being modified by the extra force is cor-
rect, the f > 0.7 values implied for these cool giants are signif-
icantly higher than the estimates given for absorption/scattering
in molecular lines in the photospheres of AGB stars (see Sect. 5).
They are closer to the effective f ∼ 1 values inferred from
the pulsation-driven winds of AGB Mira stars. This reflects the
fact that radiation pressure is not the only energy and momen-
tum source available in the photospheres of giant stars (e.g.,
even non-pulsating cool giants show bulk motion, manifesting
as radial-velocity jitter; Gunn & Griffin 1979).

7.4. No RLOF for f> 1

We showed in Fig. 2 that when f > 1, there is no longer a crit-
ical Roche surface around the mass-losing star, so that the very
concept of RLOF becomes meaningless.

For a star where, e.g., the radiation pressure is high enough to
expel stellar material, the potential corresponds to a net repulsive
force (long-dashed-line in Fig. 2) and the Roche lobe around
the mass-losing star has no meaning any longer. Similarly the
stellar radius needs to be re-defined, especially in the case of
optically-thick winds (as for WR stars), when the photospheric
radius (corresponding to an optical depth τ = 2/3) falls within
the wind (de Loore et al. 1982; Baschek et al. 1991; Moffat &
Marchenko 1996). This property is accounted for in recent stellar
models which correct the stellar radius using extrapolation of the
wind expansion law in the optically-thick region (Langer 1989;
Hamann 1993).

A further consequence of the absence of a Roche lobe around
radiatively driven mass-losing stars is that there is no dramatic
change in the mass-loss regime from wind mass loss to RLOF,
as the latter is now ill-defined. In fact, several authors have al-
ready promoted this idea of a smooth transition of the mass loss
rate from the wind to the RLOF regime (Tout & Eggleton 1988;
Frankowski & Tylenda 2001).
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An important issue related to mass transfer is to evaluate
whether or not a common envelope will form and this outcome
depends on the geometry of the equipotentials. Contrarily to the
situation prevailing during classical RLOF, the mass lost by the
wind is not necessarily injected into the Roche lobe of the com-
panion as illustrated in Fig. 7. In particular, a substantial fraction
of the wind can avoid the companion’s Roche lobe and instead
be used to form a circumbinary disc.

7.5. Pulsation-driven winds: the case of Mira stars

The process driving the wind in Mira stars seems to start with
pulsation-induced shock waves that lift the matter high enough
above the photosphere for dust to form. Since all photospheric
particles will feel this upward force, it should be included in the
effective potential. However, in the case of momentum transfer
from shock waves, there is no simple mathematical expression
for the extra acceleration gext, unlike the case of the radiation-
pressure force. Nevertheless, it is possible to infer the run of gext
as a function of the distance r1 from the stellar surface using
model predictions for the wind velocity (see e.g., Bowen 1988;
Willson 2000). In the steady state approximation, the accelera-
tion dv/dt for a wind particle is

− ggrav + gext = dv/dt = v
dv
dr1
· (19)
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Eq. (20).

The above relation implicitly assumes that the wind velocity
function is derivable. It thus requires us to smooth the disconti-
nuities associated with the shock waves (thick line in Fig. 8). By
suppressing the non-conservative character of the shock waves,
this case becomes similar to that of a conservative force deriv-
ing from a potential Φext. The fact that Mira stars have relatively
low-velocity winds implies that this extra force is mostly used
to lift the matter out of the potential well. The run of f with
distance is then written

f (r1) ≡ gext(r1)
ggrav(r1)

= 1 +
v

ggrav(r1)
dv
dr1
· (20)

Because Mira stars are pulsating, their wind-velocity curves are
time-dependent (Bowen 1988). In order to mimic this time vari-
ability, high-frequency spatial and temporal variations are added
to the smooth, long-range velocity curve. The high-frequency
component corresponds to a sinusoidal curve whose ampli-
tude decreases exponentially with distance from the stellar sur-
face. This high-frequency component is moreover phase-shifted
by π/2 (solid line in Fig. 8) and π (long-dashed line) to mim-
ick the temporal evolution (shock-wave propagation). The cor-
responding potentials are represented in Fig. 9 (solid, long- and
short-dashed lines). Inside the stellar radius, matter is supposed
to be in hydrostatic equilibrium, with gas and radiation pressure
balancing gravitation, so that matter is at rest on average. At dif-
ferent times of the shock-wave propagation, the potential can be
repulsive (solid and long-dashed curves), allowing for the ejec-
tion of matter, or becomes attractive (short-dashed line), tem-
porarily preventing mass ejection.

In our calculations, f remains on average only slightly larger
than unity which confirms the fact that the driving mechanism is
mainly used to work against the gravitational attraction. Finally,
for binary systems involving Mira stars, the companion does in-
fluence the mass-losing star by altering the physical processes
driving its wind. Frankowski & Tylenda (2001) for instance
stress that the empirical formulae fitting red-giant mass-loss
rates (Reimers 1975; Arndt et al. 1997) depend on the surface
gravity, and consider how gravity of the mass-losing star will
be altered, both because of the straightforward addition of the
companion gravitational attraction and because of the tidal dis-
tortion. Furthermore, in Mira stars, the gravitational field of the
companion may also alter the source of the mass-loss, by dis-
turbing the formation and the properties of the shock waves. All

−2 −1 0 1 2
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x
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−2Φ

Fig. 9. Same as Fig. 2 in the case of a Mira-type wind (solid, short- and
long-dashed lines), derived from the wind velocity curves displayed in
Fig. 8 and using Eq. (20). The star is assumed to have a radius of 0.1 (in
units of the orbital separation), and μ = 2/3. The dotted and dot-dashed
lines correspond respectively to the cases f = 1 and f = 0.

these aspects contribute to making the determination of f rather
uncertain.

8. Conclusions

This paper presents and analyses the Roche potential modi-
fied by the presence of an extra force associated with radiation
pressure or pulsation. The magnitude of this perturbing force is
quantified by the parameter f which represents the ratio of the
extra-force and the gravitational attraction (Schuerman 1972).
An estimate of this parameter for main sequence, RGB, AGB
and Mira stars is also provided.

For 0 < f < 1, the Roche potential may be substantially
modified. In particular, if f > f1 the deformation of the equipo-
tentials allow the matter ejected by the mass-losing star to go into
a circumbinary disc. As the extra force ( f ) becomes stronger, the
Roche radius decreases, favouring RLOF mass transfer.

Numerical fits and generalisation of the Roche radius are
provided in this paper for f < 1. It is shown that the effects
of the extra force on the RLOF stability is negligible.

For f > 1, the Roche lobe has no meaning any longer.
Such situations occur in luminous stars where radiation drives
the mass loss or in pulsating giant stars. In this latter case, the
recurrent deposition of momentum by the shock waves in the
atmosphere allows matter at the surface to be expelled.

The consideration of a modified Roche lobe is (directly or in-
directly) supported by numerous observations (like the frequent
occurrence of circumbinary discs in post-mass-transfer systems,
and the small classical Roche-filling factors derived for symbi-
otic or M giants despite their ellipsoidal variability or circular
orbit...) and should be taken into account.
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