Formation of the Long-Period Eccentric Binary IP Eri

P. J. Davis, L. Siess, and A. Jorissen

Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels 1040, Belgium

Abstract. We present a formation channel that is able to reproduce the observational properties of the K0 + He white dwarf binary IP Eri, in particular its high eccentricity ($e \approx 0.25$). Our scheme invokes a tidally-enhanced wind loss mechanism on the red giant branch that can counteract the circularising effect of tides, thereby preserving or even increasing the eccentricity.

1. Introduction

IP Eri is a long period ($P_{orb} \approx 1100$ d), significantly eccentric binary system, consisting of a Helium white dwarf (He-WD) and a KOIV companion situated at the base of the first red giant branch (RGB, Merle et al. 2014). The He-WD formed by the ejection of the progenitor's envelope as it ascended the RGB. However, the high eccentricity cannot be accounted for by canonical formation channels. Using our state-of-the-art binary evolution code BINSTAR (Siess et al. 2013, 2014), we investigate an alternative scenario which invokes a tidally-enhanced wind-loss mechanism.

2. The Companion Reinforced Attrition Process (CRAP)

Tout & Eggleton (1988) suggested that tidal interactions are responsible for stellar wind-loss enhancement, proposing a mass loss rate given by

$$\dot{M}_{\text{wind}} = \dot{M}_{\text{Riemers}} \left[1 + B_{\text{wind}} \times \min\left(\frac{R_1}{R_{\text{L}1}}, \frac{1}{2^6}\right) \right],\tag{1}$$

where \dot{M}_{Riemers} is the Riemers mass loss rate, R_1 and R_L are the giant's stellar and Roche lobe radius respectively, and a parameter $B_{\text{wind}} \approx 10^4$.

Changes in the eccentricity, e, via tidal interactions of the *i*th star (\dot{e}_{tidei}) are calculated using the formalism described by Zahn (2008), while the contribution from systemic wind losses, \dot{e}_{wind} , is (see, e.g. Soker 2000)

$$\dot{e}_{\text{wind}} = \frac{|M_{1,\text{wind}} + M_{2,\text{wind}}|}{M_1 + M_2} (e + \cos\nu).$$
(2)

Here, M_i is the *i*th star's mass, $\dot{M}_{i,\text{wind}}$ is the wind loss rate from the *i*th star and v is the true anomaly. The total rate of change of e is therefore

$$\dot{e} = \dot{e}_{\text{tide},1} + \dot{e}_{\text{tide},2} + \dot{e}_{\text{wind}}.$$
(3)

Figure 1. Evolution of different parameters for the model calculation (see text) that best reproduces the observed values of IP Eri: the left panel indicates the gravity $(\log g)$ vs. T_{eff} (the WD is shown as the black cross, and the K0 star by the red cross, including the inset). The circle sizes are proportional to the radius of the mass-losing star. The right panel shows the eccentricity versus orbital period, where the vertical bar indicates the location of IP Eri.

3. Results

Using a binary model consisting of a primary and a secondary star with initial masses $1.5+1.45 \ M_{\odot}$, we obtain a remarkable agreement with the observed stellar parameters (Fig. 1, left panel). Additionally, the observed location of IP Eri on the *e*-*P*_{orb} plane (right panel) can be fitted very well, taking an initial period and eccentricity of 415 d and e = 0.4, respectively, with a strong wind enhancement factor $B_{\text{wind}} = 3.6 \times 10^4$.

Winds always act to increase the eccentricity (Eq. 2). If the mass loss rate is sufficiently enhanced via the CRAP, then we have $\dot{e}_{wind} > |\dot{e}_{tide,1} + \dot{e}_{tide,2}|$, i.e. winds counteract the circularising impact of tides, and the eccentricity globally increases. Thus, CRAP is a promising mechanism to generate significant eccentricities observed in post-AGB stars or Ba stars.

References

Merle, T., Jorissen, A., Masseron, T., et al. 2014, A&A, 567, A30

Siess, L., Davis, P. J., & Jorissen, A. 2014, A&A, 565, A57

Siess, L., Izzard, R. G., Davis, P. J., & Deschamps, R. 2013, A&A, 550, 100

Soker, N. 2000, A&A, 357, 557

Tout, C. A., & Eggleton, P. P. 1988, MNRAS, 231, 823

Zahn, J.-P. 2008, in EAS Publications Series, edited by M.-J. Goupil, & J.-P. Zahn, vol. 29 of EAS Publications Series, 67